Next: Strain-Displacement Matrix Up: Two Dimensional Element Mechanics Previous: Geometric Description
The kinematics of the plane shell element are defined also by invoking the isoparametric hypothesis which leads to
![\begin{displaymath}\left\{\begin{array}{c}
u\\
v
\end{array} \right\} =
\su...
...ay} \right\}
+ \frac{t_i \eta}{2} {\bf R}_i \theta_i
\right]
\end{displaymath}](img178.gif) | (57) |
or concisely
![\begin{displaymath}{\bf u}=\sum_{i=1}^{n} N_i (\xi) \left[ \overline{{\bf u}}_i
+ \frac{t_i \eta}{2} {\bf R}_i \theta_i \right]
\end{displaymath}](img179.gif) | (58) |
where
and
are the middle surface displacements in the X and Y directions at node i, respectively, and
is the rotation arm vector at node i given by
 | (59) |
A. Zeiny
2000-09-06