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Abstract of the Dissertation

Nonlinear Time-Dependent Seismic Response of Unanchored

Liquid Storage Tanks

by

Ali Abdel-Wahab El-Zeiny

Doctor of Philosophy in Civil Engineering

University of California, Irvine, 1995

Professor Medhat A. Haroun, Chair

The present study investigates the effects of liquid hydrodynamic pressures ex­

erted on thin-walled liquid storage tanks during earthquake motions. Several com­

plexities are involved in the analysis of such tanks depending on their boundary

conditions. In the case of unanchored liquid storage tanks, complexities arise due to

successive contact and separation between base plates and foundations, large ampli­

tude deformations of base plates, pre- and post-buckling behavior of shells, material

yielding, soil-tank interaction, and large-amplitude free surface sloshing.

The main objective of this research is to develop a two/three dimensional com­

puter model capable of performing simulation of the complex dynamic behavior of

various types of liquid storage tanks subjected to a strong seismic base excitation.

XVll



The model takes into consideration both large amplitude liquid sloshing and nonlin­

ear liquid-structure interaction using the finite element method. The program also

has the following features:

• An up-to-date finite element technology for the analysis of solids and curved

shells using the degeneration concept, and considering material plasticity and

geometric nonlinearity. The program is expandable to accommodate any desired

new plastic model.

• Modeling of potential flow problems using an efficient Eulerian finite element.

• Modeling of free surface sloshing that utilizes the nonlinear wave theory formu­

lation. The updated Lagrangian description of the liquid domain boundaries is

utilized to keep track of the free surface position at any time.

• A variational principle that forms the basis for the numerical discretization of

nonlinear fully coupled liquid-structure interaction problems with free surface

sloshing. Since a Lagrangian description of the solid motion is utilized, the

program uses an updated Eulerian-Lagrangian description of the liquid-solid

interface in order to enforce compatibility between solid and liquid elements.

The resulting nonlinear Euler-Lagrange equations are solved using an efficient

time integration technique that has been specially developed to solve the liquid­

structure interaction problems.

• General contact analysis that accommodates a wide range of contact prob­

lems including liquid-structure interaction problems. A Lagrange multiplier

technique was employed to enforce both displacement compatability and force

transmissibility constraints along unknown contact surfaces. The program effi­

ciently handles the special case of contact of unanchored liquid storage tanks.

xvIII



Chapter 1

Historical Background

1.1 Introduction

Liquid storage tanks are important components of lifeline and industrial facili­

ties. They are critical elements in municipal water supply and fire fighting systems,

and in many industrial facilities for storage of water, oil, chemicals and liquefied nat­

ural gas. Behavior of large tanks during seismic events has implications far beyond

the mere economic value of the tanks and their contents. If, for instance, a water tank

collapses, as occurred during the 1933 Long Beach and the 1971 San Fernando earth­

quakes, loss of public water supply can have serious consequences. Similarly, failure

of tanks storing combustible materials, as occurred during the 1964 Niigata, Japan

and the 1964 Alaska earthquakes, can lead to extensive uncontrolled fires. Many

researchers have investigated the dynamic behavior of liquid storage tanks both the­

oretically and experimentally. Investigations have been conducted to seek possible

improvements in the design of such tanks to resist earthquakes. Intensive research

on the subject started in the late 1940s in fields of aerospace technology. The em­

phasis of those studies was on the influence of the vibrational characteristics of liquid

containers on the flight control system of space vehicles (e.g. [2]).

1
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Figure 1.1: Classification of Tanks According to Support Condition

Liquid storage tanks can be found in many configurations: elevated, ground­

based, and underground. Steel ground-based tanks consist essentially of a steel wall

that resists outward liquid pressure, a thin fiat bottom plate that prevents liquid from

leaking out, and a thin roof plate that protects contents from the atmosphere. It is

common to classify such tanks in two categories depending on support conditions:

anchored and unanchored tanks, as illustrated in Figure (1.1). Anchored tanks must

be connected to large foundations to prevent the uplift in the event of earthquake

occurrence. However, improperly detailed anchors may damage the shell under seis-

mic loading resulting in a ripped tank bottom. Hence, it is common, particularly for

large size tanks, to support the shell on a ring wall foundation without anchor bolts

and to support the bottom plate on a compacted soil though, sometimes, ring walls

are omitted. Based on the orientation of the axis of symmetry, anchored tanks are

either horizontal or vertical. Circular vertical tanks made of carbon steel are more

numerous than any other type because they are efficient in resisting liquid hydrostatic

pressure mostly by membrane stresses, simple in design, and easy in construction.
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1.2 Relevant Areas of Study

Problems associated with the seismic behavior of liquid storage tanks involve the

analysis of three systems: the tank, the soil and the liquid, as well as the interaction

between them along their boundaries. The up-to-date technology in the nonlinear

finite element analysis of plates and shells is utilized to model the tank wall and base

plate. The Eulerian finite element method is used to model the liquid inside the

liquid domain while the Lagrangian-Eulerian finite element method is used to model

the liquid boundaries. Interaction between the tank and the liquid is due to the liquid

hydrodynamic pressure that transfers a significant amount of energy to the tank. In

addition, the motion of the tank shell is the main source of the liquid energy. Since

this energy transfer occurs simultaneously throughout the liquid boundary, it becomes

essential in the analysis of such systems to consider the liquid-structure interaction

effect.

Analysis of the seismic behavior of unanchored tanks also includes the effect

of large amplitude base uplifting. It has been observed in past earthquakes that

the bottom plate can be lifted by as much as one foot or more, and therefore, its

behavior affects the response of the overall system in a dominant way. The uplifting

problem is a special type of the nonlinear contact problem between two bodies. Thus,

the evolution of contact analysis as well as Large deflection and rotation analysis of

plates and shells are strongly related to the area of the seismic behavior of unanchored

tanks. It also involves the seismic behavior of the soil and the dynamic soil-structure

interaction.

In summary, the previous work related to the seismic analysis of on ground

liquid storage tanks may be characterized mainly by the method of the analysis and
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Figure 1.2: Main Characteristics of the Analysis of On-Ground Liquid Storage Tanks

the investigated problem, as shown in Figure (1.2). The method of investigation of

such problems is either experimental, analytical or numerical. As computers have

evolved, numerical methods became the most effective method to analyze complex

problems. Many researchers have been employing the finite element method to inves-

tigate contact problems, soil plasticity and large amplitude liquid sloshing as well as

both fluid-structure and soil-structure interactions.

1.3 Past Studies of Anchored Tank

Although the response of anchored tanks is totally different from that of unan-

chored tanks, the development of numerous analyses for the dynamic behavior of the
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former under horizontal and vertical excitations has greatly affected the understand­

ing of the seismic response of unanchored tanks. Early developments of the seismic

response of liquid storage tanks considered the tank to be rigid, and focused atten­

tion on the dynamic response of the contained liquid, such as the work performed

by Jacobsen [129], Graham and Rodriguez [71], and Housner [112]. Later, the 1964

Alaska earthquake caused large scale damages to tanks of modern design [79] and pro­

foundly influenced research into vibrational characteristics of flexible tanks. Different

solution techniques and simplified models were employed to obtain the seismic re­

sponse of flexible anchored liquid storage tanks.

1.3.1 Numerical Technique Investigations

Evolution of digital computers and associated numerical techniques have signif­

icantly enhanced solution capabilities of complex problems. The first use of a digital

computer in analyzing anchored liquid storage tanks was completed by Edwards [51].

He employed the finite element method and a refined shell theory to predict seismic

stresses and displacements in a vertical cylindrical tank having a height to diameter

ratio smaller than one. This investigation treated the coupled interaction between the

elastic wall of the tank and the contained liquid. The tank cross section was assumed

to be restrained against cross section distortions. Shaaban and Nash [248] undertook

a similar research concerned with the earthquake response of cylindrical elastic tanks

using the finite element method. Shortly after, Balendra and Nash [14] offered a

generalization of the analysis by including an elastic dome on the tank. Fenves [61]

used a mixed displacement-fluid pressure formulation for the fluid, and a standard

displacement finite element formulation for the structure.
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A different approach to the analysis of flexible containers was developed by

Veletsos [284]. He presented a simple procedure for evaluating hydrodynamic forces

induced in flexible liquid filled tanks. The tank was assumed to behave as a single

degree of freedom system, to vibrate in a prescribed mode and to remain circular

during vibrations. Hydrodynamic pressure distribution, base shears and overturn­

ing moments corresponding to several assumed modes of vibration were presented.

Later, Veletsos and Yang ([282]' [283]) estimated maximum base overturning moment

induced by a horizontal earthquake motion by modifying Hausner's model to consider

the first cantilever mode of the tank. They presented simplified formulas to obtain

the fundamental natural frequencies of liquid filled shells by the Rayleigh-Ritz en­

ergy method. Another approach was attempted by Natsiavas [200]. He expanded the

structural displacements in appropriate series forms which involve both rigid body and

flexible components. The latter components were expressed as linear combinations

of terms, each of which is a product of a function with assumed spatial dependence

and an unknown time-dependent function. These time functions were then deter­

mined from solving the equations of the fluid-structure system, which were set up by

employing Hamilton's principle.

In 1980 and 81, Haroun and Hausner [106] used a boundary integral theory to

drive the fluid added mass matrix, rather than using the displacement based fluid

finite elements. The former approach substantially reduced the number of unknowns

in the problem. They conducted a comprehensive study ([97], [98], [100], [101], [102],

[103], [104], [106]) which led to the development of a reliable method for analyzing the

dynamic behavior of deformable cylindrical tanks. A mechanical model [104], which

takes into account the deformability of the tank wall, was derived and parameters of

the model were displayed in charts to facilitate the computational work. The model
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may be applied to predict the maximum seismic response by means of a response

spectrum. It received wide spread application because the previous models were

either too complicated to be used in the design or too simple to give accurate results.

Later, Haroun included more complicating effects in his analyses, such as the effect

of out of roundness on the dynamic response of flexible tanks, the effect of initial

hoop stress on the cos nB-type modes and the soil-structure-fluid interaction ([83],

[87], [88], [92]' [105], [188], [189]).

The boundary integral technique was also employed by Williams and Moubayed

([289]' [290]) to investigate the response of liquid storage tanks. They utilized a

fluid Green's function to reduce the fluid domain to a line integral of the velocity

potential on the surface of the structure. They calculated the hydrodynamic pressure

distribution on a rigid submerged cylindrical tank subjected to a horizontal or vertical

harmonic ground excitation. In a following work [288], they expressed both the

structural and fluid axisymmetric motions in terms of appropriate Green's functions

that lead to a pair of coupled line integral equations for the fluid velocity potential

and its normal derivative on the walls of the tank. They studied the influence of the

frequency of the ground excitation and the various geometric and material parameters

on the hydrodynamic pressure distribution and the associated dynamic response of

liquid storage tanks when subjected to high frequency vertical ground motions.

The finite element method combined with the boundary element method was

used by several investigators, such as Grilli [72]' Huang [114] and Kondo [142], to in­

vestigate the problem. Hwang ([119], [120]) employed the boundary element method

to determine the hydrodynamic pressures associated with small amplitude excita­

tions and negligible surface wave effects in the liquid domain. He obtained frequency­

dependent terms related with the natural modes of vibration of the elastic tank and
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incorporated them into a finite element formulation of an elastic tank in frequency

domain. Generalized displacements were computed by synthesizing the complex fre­

quency response using the Fast Fourier Transform procedure.

The vibrations of a thin-walled cylindrical shell filled with an ideal liquid were

investigated by Goncalves [70]. He used modal expansions for the displacements of

the shell and expanded the velocity potential function in terms of harmonic func­

tions which satisfy the Laplace equation. The Galerkin method was used to reduce

the problem to a system of coupled algebraic nonlinear equations for the modal am­

plitudes. All of these studies showed that seismic effects in a flexible tank may be

substantially greater than those in a similarly excited rigid tank.

1.3.2 Geometrically Nonlinear Effects

In order to simplify the problem, former investigations ignored some nonlinear

factors that may affect the response of anchored liquid storage tanks. Several re­

searchers tried to refine the analysis by including the effects of these factors in the

analysis. Sakai and Isoe ([234]' [235]) investigated the nonlinearity due to partial

sliding of the anchored tank base plate on its foundation. Huang [113] performed

geometrically nonlinear analysis of tanks to investigate the large deflection effect. He

stated that the beneficial effects of large deflections were most pronounced in plates

having restraint against in-plane displacements. This restraint can be provided by

adjoining plates in tank structures. Haroun and Mourad ([86], [88], [186], [187]' [188]'

[189]) used experimental modal analysis techniques to assess the effects of out-of­

roundness imperfections on the structure response. They also examined the buckling

of the actual tanks. Costley et al ([41], [42]) presented a method to determine the
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critical buckling load of tanks using experimental modal analysis techniques. Rinne

[231] developed a criterion for buckling of the shell due to lateral forces and defined

a shell buckling resistance coefficient.

Uras et al [273] studied the influence of geometrical imperfections on the dy­

namic stability of liquid filled shells under horizontal ground excitations. He intro­

duced a general imperfection pattern in the circumferential direction to analyze the

geometrical stiffness term. Imperfection effects on buckling of liquid-filled shells were

also discussed in ([4]' [35], [266]).

Zhou et al [299] presented a method for analyzing the elephant-foot buckle

failure of ground-supported broad cylindrical tanks under horizontal excitations. Peek

([217], [218]) reviewed buckling criteria and showed that the plastic collapse criteria

developed by axisymmetric analyses were also approximately applicable when the

loading was not axisymmetric. Chiba [33] presented a theoretical analysis for the

dynamic stability of a cylindrical shell partially filled with a liquid, under periodic

shearing forces. He used a dynamic version of the Donnell equations and the velocity

potential theory to determine the instability boundaries. Other issues related to

buckling ofliquid storage tanks were also presented in ([133], [158], [159], [170], [181],

[190]).

1.3.3 Effect of Rocking and Vertical Excitations

Investigations of the effect of a rocking motion on the seismic response of liquid

storage tanks started in 1980 by Ishida [128]. Later, in 1985, Haroun and Ellaithy

[96] presented an analytical mechanical model for flexible cylindrical tanks under­

going both a lateral translation and a rigid base rocking motion. Using a classical
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hydrodynamic pressure approach and assuming an approximate deflected shape for

the tank walls, explicit expressions for parameters of the model were obtained. In

addition, they investigated the effect of large deflections on the dynamic response of

flexible tanks. Veletsos et al [279] analyzed the dynamic response of upright circular

cylindrical tanks to a rocking base motion of an arbitrary temporal variation. He

generalized the mechanical model for laterally excited tanks to include the effects of

base rocking of both rigid and flexible tanks.

The response of liquid storage tanks to vertical excitations has not drawn much

attention as most studies were concerned with the response due to lateral excitations.

Bleich [25] studied the forced axial response of tanks by idealizing the tank shell as a

system of rings stacked on top of one another, but he ignored the axial deformations

and bending rigidity of the tank wall. Marchaj [176] conducted a simplified study

that focused attention on the importance of the vertical acceleration in the design

of tanks. Kumar [145] carried out a critical study of axisymmetric seismic behavior

of tanks in which the radial motion of partly filled tanks was considered but effects

of axial deformations were neglected. He reported that for near full tanks, such

approximation has negligible effects on the accuracy of results, but for near empty

tanks, axial deformations may influence the response especially for tall tanks. Veletsos

and Kumar [281] presented a design procedure for evaluating the effects of vertical

shaking on tanks.

In 1985, Haroun and Tayel [95] reported on a comprehensive study of effects of

the vertical component of a ground excitation. They evaluated the natural frequen­

cies using both numerical and analytical techniques. In their study, they considered

both fixed and partly fixed tanks. They calculated tank response under simultaneous
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action of both vertical and lateral excitations in order to assess the relative impor­

tance of the vertical component of a ground acceleration, which has been shown to

be important. Rammerstorfer et al [230] developed an iterative procedure using the

added mass concept to obtain the dynamic pressure resulting from a horizontal exci­

tation. They showed that the formula for rigidly based tanks can be used to add the

dynamic pressure caused by the vertical excitation. They reported that the stiffness

dependent radiational damping causes the maximum dynamic pressure due to the

vertical earthquake component to depend essentially on the stiffness of the soil. They

discussed three different possibilities for superposing the dynamic pressures due to

the horizontal and the vertical earthquake components on the static pressure, and

the different modes of wall instabilities.

1.3.4 Experimental Investigations

In addition to analytical studies, several experimental investigations have been

conducted in recent years. These include ambient and forced vibration tests on full­

scale water storage tanks [106], laboratory tests on small plastic tank models subjected

to harmonic and transient excitations at their base ([249], [250]), tests with simulated

earthquake ground motions of several aluminum tank models ([36], [204]), tests on

constructed welded steel tanks which believed to be the largest of its kind in the

world [130], and of a full-scale wine storage tank of type damaged during the 1980

earthquake in Livermore, California [203].

Several other experimental studies have also been reported. Ishada and Mieda

[125] carried out a static tilt test of a model tank and a stress analysis by the finite

element method in order to investigate the stress distribution in the bottom plate
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of an anchored cylindrical tank under the seismic loading. Manos [169] studied the

behavior of a metallic cylindrical tank subjected to a horizontal earthquake loading

by examining the response to horizontal Inertial loads introduced to the structure

through a static tilt test. He also evaluated the performance of anchored wine tanks

during the San Juan earthquake [167]. Minowa [183] conducted a shaking table test

of a cylindrical tank with a spring-mass system.

Response of liquid storage tanks to impact loading was also investigated. Ruiz

et al [233] combined numerical, analytical and experimental techniques to find the

strength of thin-wall cylindrical shells under blast loading. Birk and Chidley [24]

conducted experimental study concerned with the pressures that can be generated

on the ends of cylindrical tanks by the contained liquids when the tank is suddenly

accelerated along the longitudinal axis of the tank. These experimental studies have

provided improved insight into the dynamic behavior of anchored tanks, and have

helped to clarify the limitations of the present methods of analysis.

1.3.5 Free Vibration Studies

Since a knowledge of the free vibration characteristics of the structure is essential

to obtain its dynamic response, free vibration analyses were performed on tanks and

liquid-filled shells by many investigators. Tedesco et al [268] summarized the results of

a comprehensive, computer based, numerical investigation of lateral free vibrations of

cylindrical liquid storage tanks. Gupta et al ([74], [75], [76]) used variational principles

to obtain a functional describing coupled oscillations between a linear elastic body

and a liquid of small wave heights. They introduced a complementary Rayleigh's
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quotient to obtain the natural frequencies of circular cylindrical tanks partially filled

with liquid and oscillating in an axisymmetric manner.

Tani et al [265] analyzed the linear free vibration of partially liqUid-filled shells

of revolution using the finite element method. They used thick isoparammetric shell

elements for the axisymmetric shell and isoparammetric quadrilateral elements and

line elements for the liquid interior and exterior surfaces, respectively. They reported

that the static liquid pressure has a significant effect on the natural frequency of

LNG tanks. Singhal and Williams [258] discussed the free vibrations of thick circular

cylindrical shells and rings using the energy method. They carried out experimental

investigations on several models in order to assess the validity of the analysis and

reported that comparison with experimental values showed very close agreement.

1.4 Investigations on Other Types of Tanks

The research on other types of tanks has also provided improved insight into the

dynamic behavior of anchored tanks. Several investigations for other types of tanks

have helped to clarify the complex behavior of fluid vibrations in flexible containers.

Liquefied natural gas (LNG) tanks are very common type of anchored tanks.

They are, usually, composed of two tanks: inner tank and outer tank. The inner

tank is directly in contact with the liquefied natural gas and cold gas vapor. Several

researchers have investigated the coupled gas-liquid-structure systems in order to

understand the seismic behavior of these tanks. Thompson [269] investigated the

response of double-walled cylindrical storage tanks. Joos et al [134] developed an

analysis that applies to such systems in which a hydrodynamic transient response
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of the gas creates pressure forces dependent on the flexibility of the liquid bound­

ary surfaces. Identical experiments were conducted on two geometrically identical

cylindrical tanks, one of which was rigid while the other was flexible.

Asai et al [9] instrumentally observed earthquake responses of an on-ground

LNG storage tank having a pile group foundation. The objectives of the study were

to examine whether behavior patterns other than those considered during the design

exist and to ascertain safety margins in the current aseismic design. They remarked

that the buckling vibration due to the liquid-tank shell interaction was observed

but has small influences, the ground deformation effect predominates in the bending

moment on the piles, and scaled up observed moments on the piles were half those

of estimated in the design. Haroun and EI-Zeiny [81] provided an aseismic design

guidelines for LNG tanks. Haroun's mechanical analog was used to evaluate the

seismic demand on the LNG tanks and compare it to the seismic capacity of the tank

to evaluate its safety.

Other configurations of anchored tanks were also investigated. Pavlovic et al

[216] conducted a comprehensive parametric study for the problem of thin spherical

containers filled to capacity with liquid. The investigation placed particular emphasis

on the effect of the bending disturbances arising at the support location.

Solutions to tanks supported on towers were also attempted. Haroun and Lee

[89] presented a finite element analysis of axisymmetric shell towers supporting ele­

vated, liquid-filled vessels. The tank tower was modeled using a curved high order

ring element while the liquid was accounted for by coupling the liquid added mass

matrix to the consistent mass matrix of the shell. They used a mechanical model

which takes into account both the flexibility of the tank wall and the global rocking
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motion of the vessel. In further works, Haroun analyzed tanks supported on x-braced

frames ([93], [94]). Buckling of elevated tanks has also been investigated by Allen et

al [5].

In addition to elevated tanks, large-sized, multi-walled coaxial cylindrical tanks

have been studied in recent years. Since various kinds of oil can be stored in these

tanks, it is common to find such tanks in oil industrial facilities. Yoshida [295]

described theoretical studies of coupled vibrations of the contained liquid and the

shell plate of such tanks in response to lateral earthquake excitation by the finite

element method. He analyzed the buckling motion which occurs in the relatively

high frequency region due to flexibility of the shell.

The LMR reactor tanks were also studied. Chang et al [30] presented a method

for the seismic analysis of these tanks. Mathematical models of a reactor tank and an

LMR plant were given. They described various methods of seismic analysis suitable

for the analysis of fluid-structure interaction of LMR plant and their advantages

and drawbacks. Emphasis was placed on the efficiency of the numerical algorithm.

They presented the computer code FLUSTR-ANL that was developed for the seismic

analysis of LMR components.

1.5 Evolution of Seismic Analyses of Unanchored

Tanks

Researchers did not realize until 1967 that unanchored tanks need more at­

tention than anchored tanks. Rinne [231] reported that the Prince William Sound,
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Alaska, earthquake of 1964 caused more extensive damage to oil storage tanks, most

of which were unanchored, than to other structures. This damage highlighted the

need for a careful analysis of such tanks. Shell buckling near the bottom of unan­

chored tanks was a phenomenon experienced during this earthquake. In a few tanks,

buckling was followed by a total collapse of the tank. For most tanks, uplift occurred

typically around the periphery of the tank bottom plate, which was lifted as much as

two inches off the supporting foundation, causing yielding and plastic deformations

in the plate.

The Balboa Water Treatment Plant was under construction when the 1971

San Fernando earthquake struck. Housner, Jennings and Brady [132] estimated that

ground shaking at the plant's site was in the range of 0.3-0.5 g peak acceleration,

and reported that there were many tanks affected and damaged by the earthquake.

A large steel wash-water tank with a diameter of 100 ft and a height of 30 ft was

approximately 1/2 to 3/4 full. After the earthquake, the tank showed signs of having

rocked on its foundation. Some anchor bolts failed in tension, and others failed in

bond and were pulled up off their anchorage. The pullout varied from 2-14 inches.

The upper part of the shell buckled inward due to high stresses that existed in the

tank when it was tilting on its toe. Another tank suffered damage in the form of

an axisymmetric outward bulge of its shell close to ground level almost all the way

around the circumference. The bulge covered a height of approximately 20 inches

with an amplitude of about 8 inches.

In 1982, Niwa and Clough [203] investigated the earthquake response behavior

and the buckling mechanism of a tall cylindrical wine storage tank similar to those

damaged in the 1980 Livermore earthquake. It was reported that most of damaged

tanks were unanchored and completely full of wine. The elephant foot buckling,
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Figure 1.3: Elephant Foot Buckling

Figure (1.3), was the most common damage in broad tanks while tall tanks suffered a

diamond shaped buckling spreading around the circumference, Figure (1.4). A 9.5 ft

diameter by 20 ft high tank was tested under simulated earthquake accelerations up

to 0.95g, and buckling patterns similar to those that occurred in the earthquake were

observed during tests. The critical buckling stress observed during the development of

the diamond-shaped buckle pattern was about 60% of the theoretical buckling stress.

This value was considerably higher than that adopted in the API 650 and AWWA

D100 Standards. Hence, Niwa and Clough concluded that the critical buckling stress

assumed in current standards for the steel tank design might lead to rather conser­

vative estimates of the buckling strength of a free base tank subjected to rocking
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Figure 1.4: Diamond Shape Buckling

motions. The actual loading conditions during the uplift response were far different

from those provided in static buckling tests of small cylinders under uniform axial

compression, on which the current design buckling stress has been based. It was

also reported that the uplifting behavior of the bottom plate showed that ignoring

the membrane stress mechanism considerably underestimated the uplifting stiffness

of the bottom plate, and they recommended further studies of uplifting kinematics of

free base tanks.

Hanson [79] discussed the behavior of liquid storage tanks during the 1964

Alaska earthquake. He reported that although considerable damage to such tanks

has occurred during the earthquake by tsunamis, earth settlement and subsoillique­

faction, a significant portion of damage resulted from direct structural action of the

tank and its contents generated by the earthquake ground shaking. He showed that

earthquake forces can cause an uplift of the tank edge, and this uplift increases the
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possibility of the tank damage and subsequent loss of its contents. By using Housner's

model, and assuming a 20% g peak ground acceleration and a lightly damped spec­

tral velocity, he concluded that this ground motion was sufficiently intense to cause

a typical tank to uplift and to account for the observed damage. For an uplifted

tank, he found that true stresses and the precise progress of failure is very hard to

analyze, and that any reasonable estimate of the factor of safety against collapse is

difficult to make. However, he recommended that liquid storage tanks should be de­

signed and constructed to resist realistic earthquake forces without significant uplift,

or provisions should be made to contain the contents of tank after its collapse.

A brief description of the structural and nonstructural damages of unanchored

tanks during the 1979 Imperial Valley earthquake was presented by Haroun [99J in

1983. Observed damages were similar to those produced by past major earthquakes.

He reported that buckling of the bottom of tank shells due to excessive compressive

stresses, damage to fixed roofs due to liquid sloshing and failure of attached pipes

due to their inability to allow for the shell movement, had occurred. He also reported

that tall tanks have suffered shell damage. In addition, he investigated the validity

of current standards and codes by comparing observed damages with predictions

obtained by using existing methods of analysis. Based on an approximate analysis of

damage, he concluded that current design codes for seismic analysis of unanchored

tanks can lead to a conservative design because of the very low allowable buckling

stress. Further evaluations and comparisons between design codes and guidelines were

performed by Haroun in different publications such as ([82], [85], [91]).

The 1983 Coalinga earthquake subjected many unanchored oil storage cylindri­

cal tanks to an intense ground shaking. Damages occurred to these tanks were studied

by Manos and Clough [173J. Observed damages included elephant foot buckling of the
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tank wall at the base, joint rupture, top shell buckling, bottom plate rupture, damage

to floating roofs and pipe connections, and spilling of oil over the top of many tanks.

They estimated peak ground accelerations at various tank sites to range from 0.39g

to 0.82g. Based on a correlation of observed damages with the response parameters

specified by current codes, Manos and Clough concluded that current U.S. practice

underestimates sloshing response of unanchored tanks with floating roofs, and does

not adequately address the dynamic uplift mechanism and buckling behavior.

All aforementioned studies showed the need for rigorous analysis of unanchored

tanks. Improved methods of analysis need to properly account for the effects of large­

amplitude of base uplifting, large-amplitude liquid sloshing, liquid-structure interac­

tion, pre- and post-buckling behavior of the shell, material plasticity and soil-structure

interaction. Thus, the problem associated with the seismic behavior of unanchored

tanks was cited by the National Research Council [194] as the most challenging prob­

lem in fluid-structure systems.

1.5.1 Experimental Investigations

Most of pioneering studies performed to investigate the seismic behavior of

unanchored liquid storage tanks were experimental in nature because of the complex­

ities associated with the analytical solution of the problem. The majority of these

experiments were performed on small scale models. A pioneer work in this field was

performed by Clough and his coworkers during a large experimental program with

model tanks on the EERC shaking table. A broad tank, 12 ft in diameter by 6 ft

in height, was investigated by D. Clough [36] and a few years later by Manos ([168],

[171]). In addition, Manos and Clough ([174], [175]) presented the dynamic response
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results of an unanchored broad aluminum tank model of a similar size due to one hor­

izontal component of the 1940 El Centro earthquake record applied with 0.5g peak

acceleration. The tank base was free to uplift from either a rigid or a flexible base

surface. The tank response was dominated by the uplift mechanism which varied

nonlinearly with the intensity and frequency of input motions. For a rigid founda­

tion, the coupling of uplift mechanism with out-of-round distortions resulted in high

compressive axial membrane stresses developed over a narrow contact zone. For a

more flexible foundation, lower compressive stresses, distributed more widely along

the base of the tank wall, were observed. Also, for a less rigid foundation, large uplift

accompanied by high levels of compressive hoop stresses on the uplifted part of the

tank wall, and correspondingly large bending and membrane stresses in the bottom

plate, were reported. They concluded that a realistic uplift mechanism prediction,

out-of-round distortional response, foundation flexibility and a more realistic failure

criterion should be incorporated in design procedures. They also recommended fur­

ther experimental work to establish allowable values of buckling stresses suitable for

use in the seismic design of such tanks. In a following work [173], they examined

two cases of the behavior of tank models when subjected to lateral loads. In the first

case, these loads were introduced by a static-tilt test. In the second case, the dy­

namic characteristics of the same model were examined by subjecting it to a variety

of horizontal base motions.

In 1979, Clough et al [37] summarized results of an experimental study on tank

models that started in 1975. Objectives of the study were to measure the actual

behavior of two aluminum cylindrical tank models when subjected to realistic base

motions, and to compare this behavior with predictions based on standard design pro­

cedures. They reported that due to the tank wall flexibility, impulsive hydrodynamic
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pressure component was amplified beyond the value expected in a rigid tank, and

flexibility associated with the uplift mechanism drastically altered the entire tank

behavior. Significant out-of-round displacements were observed in both tanks and

were believed to be related to initial imperfections of the tank's geometry. It was

noted that for the same input acceleration amplitude, shell displacement and stress

amplitudes were much higher in unanchored tanks than those in anchored tanks.

They also reported that for unanchored tanks, there was a poor correlation between

predicted and observed results, and the unexpected behavior observed in these tests

with respect to uplifting kinematics demonstrated the need for additional analytical

studies of seismic response of unanchored tanks.

In addition to tests on broad tanks, tall tanks were also tested. In 1979, Clough

and Niwa [38] reported the results of a static tilt test of a cylindrical liquid storage

tank. The tilt test was carried out on the same aluminum tall tank model (7-3/4

ft by 15 ft) used earlier in previous shaking table tests performed by Niwa [204].

Results of typical design calculations were compared with the observed behavior, and

it was noted that the unanchored tank tilted more and developed much greater axial

stresses than were indicated by typical design procedures. Compressive stresses were

concentrated over a much narrower contact zone than was expected, leading to an

amplified peak stress. In a following work, Niwa and Clough [203] investigated the

buckling of these tanks under earthquake loadings.

Small scale models were also tested experimentally. Ishida et al [127] performed

a vibration test and a static tilt test on a small stainless steel tank model. In 1984,

Shih and Babcock ([249], [250]) reported on an experimental project which was carried

out to provide a better understanding of damages produced by the 1979 Imperial

Valley earthquake to oil storage tanks. They studied the buckling behavior of a small
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unanchored tank model constructed of Mylar A sheet with a floating roof. The tank

model was subjected to a single axis horizontal base excitation, and harmonic as well

as simulated earthquake base motion. They found that buckling of the model was

in reasonable agreement with field observations, and that floating roof had no effect

on the buckling behavior. Following a comparison with API 650 design provisions,

it was found that buckling predictions and tip over calculations of the code were

conservative by over a factor of two. They also showed a marked difference between

the response of anchored and unanchored tanks.

Tests on full scale models have also been attempted. It started in 1987 when

Sakai et al [239] presented a static tilt test with a full scale tank model in order to

investigate the uplift behavior of large size cylindrical liquid storage tanks. They

made a comparison with theory and reported that experimental results did not agree

with their theoretical analysis around the bottom of the tank. They concluded that

the stress distribution around the shell-base corner and the contact condition between

the bottom plate and the foundation should be considered carefully because of the

complicated uplift behavior. In a following work, they carried out a static tilt tests

([236], [237], [238]) in order to investigate complicated uplifting phenomena in details.

They have used such a big model as were not employed in the past studies. They

reported that their model satisfied almost perfectly the similitude law to a large-scaled

prototype tank, and consequently should grasp very well the fundamental behavior

of actual tank's uplift.

In 1983, Cambra ([27], [28]) investigated the earthquake response behavior of

an unanchored broad tank model, also 12 ft in diameter by 6 ft in height. The study

included axial symmetric lift tests, static tilt tests and dynamic shaking table tests

using both a rigid mortar as well as flexible rubber foundations. It was concluded
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that seismic response of tanks was significantly affected by the variation of founda­

tion flexibility, and there was a strong correlation between the tank shell eccentricities

created by fabrication imperfections and/or shell deformations and out-of-round re­

sponse. An empirical tie element model representing the uplift behavior of the tank

base plate was also described in order to improve design procedures for unanchored

tanks. Wozniak and Mitchell's model [292] was modified by analyzing two elastic

beams: one in the uplift region and the other in the contact region. Both beams

were subjected to a transverse distributed load which produces longitudinal mem­

brane forces. In contact region, the beam was assumed to be supported on a Winkler

foundation. This was considered an improvement since it took into account both

the membrane force and the bending moment at the beginning of the uplift region

whereas, on a rigid foundation, there were no moments assumed at junction of uplift

and contact regions. The membrane force was calculated by considering the strip

beam as an extensible string with no longitudinal displacements allowed at its ends,

and by assuming that the total load on the strip is carried only by membrane force.

This membrane force was later introduced as a given longitudinal force in the linear

equation of an elastic beam which is incompatible with the general equilibrium as

the total load is already carried through the bending of the beam. In reality, part

of the load carried by membrane effects of the plate and the remainder by bending

effects. Only the elastic behavior of the plate was considered in contradiction to the

valid assumption of the existence of plastic hinges. However, based on this model,

it was found that both the wall uplift and the separation of the tank bottom plate

occurred at values larger than what design codes anticipate for credible earthquake

magnitudes.
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Theoretical studies were also performed to support the static tilt test. Lau

([147], [148], [149]) adopted a general method for predicting the static tilt performance

of a cylindrical liquid storage tank that is free to uplift. The base plate, subjected

to both membrane tension and plate bending, was divided into contact and uplifted

regions. Deformations of the bottom plate were evaluated by a Ritz-type method

using iterations to determine the boundary of the contact region and full continuity

was maintained with the tank wall. The cylindrical tank shell was analyzed by using

Flugge thin shell theory and its stiffness was cast in a form comparable with that of

the base plate for direct stiffness summation. The stiffening effects of the top rim

wind girder and the bottom toe ring were also included. Friction exerted along the

bottom edge of the shell still in contact with the platform was modeled by lateral

support springs of a stiffness that was fine tuned to model frictional forces. Using

this analytical approach, the responses of a broad and a tall model tank to various

angles of tilt were evaluated and the results were compared with measured data. The

differences in uplift behavior between the broad and tall tank models were discussed.

Finally, the sensitivity of the uplift behavior to various parameters characterizing the

tank system were studied.

1.5.2 Simplified Models

Based on simplified theoretical investigations, many researchers have attempted

to develop simplified models for unanchored tanks. Most of these investigations have

focused attention on the behavior of the bottom plate which is a governing factor for

the behavior of unanchored tanks. It started in 1977 when Clough [36] proposed a

simplified model for uplifting of unanchored tanks, but he ignored the load carrying
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capacity of the tank bottom plate. It was assumed that the bottom plate remains

in contact with foundation on a circular area of a radius slightly less than the radius

of the tank, and that the edge of shell rests on an arc of the tank's perimeter of an

unknown central angle. A geometrical relation was found between the central angle

and the radii of the contact area before and after uplift. Total overturning moment

which causes the plate to uplift consists of two components: the moment exerted on

the tank wall by the liquid and the additional moment on the tank bottom. The

values of these moments were found from Housner's analysis of tanks with rigid walls

[272]. The two unknowns of the problem (the maximum compressive stress in the tank

shell and the central angle of the contact area) were found by solving two nonlinear

algebraic equations which govern both global vertical force equilibrium and global

moment equilibrium. One disadvantage of this model is that it does not take into

account the flexibility of either the tank wall or the bottom plate. Furthermore, it

neglects the variation of dynamic pressure on the bottom plate and uses a constant

value equal to the static pressure. In 1978, Wozniak and Mitchell [292] suggested

a more realistic model for uplifting by including the flexural stiffness of the bottom

plate, and this analysis was introduced in the AWWA D100 [6] and the API 650

Standards [7]. It was assumed that the contact area of the bottom plate with the

foundation is a segment of an unknown central angle. Flexibility of the tank wall was

not considered but the elastic behavior of the bottom plate was taken into account.

The base plate was represented by a strip of a unit width in the circumferential

direction because the relevant uplift region is assumed to be an annular ring of a width

much smaller than the radius of the tank. The strip acts as a beam resting on a rigid

foundation subjected to a liquid pressure and lifted up by a vertical force at its free

end. The maximum value of the force that can be carried by the beam is calculated

by invoking two plastic hinges: one at its free end and one at an intermediate point
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in the uplifted portion of the beam. Because the wall thickness is usually larger than

the thickness of the bottom plate, the assumption of a plastic hinge at the edge of

the bottom plate is justified. Assuming no restraining effects from the shell and no

membrane stress in bottom the plate, relations between the thickness of the plate, the

plastic stress, applied distributed loads and the uplifted length can be found explicitly.

If the tank experiences uplift, two forces resist such deformation, namely, the weight

of the roof and the shell, and the weight of liquid that will be lifted up. By writing the

equations of equilibrium of vertical forces and moments, the maximum compressive

stress and the central angle can be found as in previous model. In 1986, Leon and

Kausel [151] proposed some modifications to Wozniak and Mitchell's model. They

concluded that this model, which forms the basis of provisions of API 650 Standard,

can lead to a significant underestimation of maximum compressive stresses in the shell

under the condition of moderate shell uplift, and overestimation of the contribution

of fluid weight in resisting lift-off.

Moore and Wong [184] modified parameters defining the maximum width of

the uplifted strip of the tank base and the associated compressive stresses in tank

walls from those specified in the API 650 Standard which gives conservative values.

They collected an extensive set of damage data from the 1964 Alaska, the 1971 San

Fernando, the 1978 Miyagi-Ken-Oki and the 1980 Livermore earthquakes as well as

past experimental results and reported that the correlation between predicted seismic

resistance using the modified API code model and the observed damage was good,

and that unanchored tanks with an aspect ratio of HID between 0.6 and 1.4 were

more prone to damage than were broader or more slender tanks with the same depth

of contents. In the same year, 1984, Sakai, Ogawa and Isoe [240] discussed the elastic

behavior of a cylindrical liquid storage tank under horizontal, vertical and rocking
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motions. The shell was assumed ideally cylindrical, and nonlinear effects of the bot­

tom plate uplift were neglected. They conducted experiments on model tanks to

verify their analysis, and presented simplified procedures for analyzing fluid response

to each type of motion. In 1986, Manos [172] proposed an empirical design approach

regarding the tank-wall earthquake stability for unanchored cylindrical liquid storage

tanks. Based on experimental evidences, he assumed an empirical compressive axial

membrane stress distribution with a maximum value equal to 75% of theoretical buck­

ling stress of a uniformly compressed perfect cylinder. By equating the tank resisting

overturning moment calculated from assumed stress distribution with the earthquake

induced overturning moment obtained from modified Housner's model considering

impulsive response only, he found a limit impulsive acceleration coefficient that up­

lifting tanks could withstand. However, the complex dynamic uplift behavior of the

bottom plate and its stiffness were ignored. In addition, this approach was only a

design approximation and was not based on any rigorous analytical model. Manos

concluded that existing approaches were unreliable in predicting damages, and that

they underestimated the actual limit impulsive acceleration that tanks might with­

stand, and recommended that a realistic analytical treatment of nonlinear dynamic

response mechanism of uplifting tanks should be developed.

In 1988, Natsiavas and Babcock [199] presented an analytical model for the

response of an unanchored tank subjected to horizontal base excitation by using

Hamilton's principle. Base plate uplift was modeled as a rotational nonlinear spring

whose characteristics were obtained from previous static tilt tests. It was assumed

that the tank rests on a flexible ground but with a rigid foundation, and equivalent

springs were used for formulation of ground flexibility. They concluded that it can be

significantly unconservative to calculate loads for an unanchored tank by assuming
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the tank to be anchored. In another work, Natsiavas [198] showed that base uplift

causes a dramatic reduction in the deflective beam-type stiffness of a tank which in

turn reduces the tank response frequency and changes developed hydrodynamic loads

significantly. He also provided an explanation for some great qualitative and quantita­

tive differences in the behavior of a tank, resulting from its base fixity condition alone.

He also showed comparisons between numerical results from his analysis with experi­

mental data. In a following work [197], he presented another analytical model for the

problem. He solved the hydrodynamic problem in closed form for the most general

motion of the structure. Then, he applied Hamilton's principle to derive the equa­

tions of motion of the system. The uplifting behavior was modeled by an appropriate

rotational spring placed between the foundation and the bottom of the tank. Effects

due to ground flexibility, shell flexibility and liquid sloshing were also included. Using

this model, results were obtained and compared with experimental data. Buckling of

scale model tanks during experiments was also investigated. Furthermore, in 1989,

he presented a couple of simplified models [196] determining the hydrodynamic loads

during the seismic response of tall unanchored liquid storage tanks. In both models,

the general procedure starts by solving the fluid response problem in closed form to

eliminate all the unknowns associated with the hydrodynamic problem but the slosh­

ing ones. In the first model, the geometrical discretization was performed by applying

Hamilton's principle. In the second model, the system, parameters were identified by

requiring the same base loads when the real system and the model were subjected to

the same base motion.

In 1988, Peek [220] simplified a method of analysis for static lateral loads based

on the assumption that the restraining action of the base plate can be modeled with
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equivalent nonlinear springs. The displacements was decomposed using Fourier anal­

ysis. The solutions were compared with those from experiments and current U.S.

design analysis methods. In a following work, Peek et al [217] described a simplified

approach for determining the extent of the elephant foot buckling for ground sup­

ported unanchored liquid storage tanks subjected to seismic overturning moments.

He reported that the ultimate seismic overturning moment that can be withstood by a

tank is higher than the overturning moment at which the elephant foot buckling first

occurs. In 1989, Fischer [64] considered analytically the frictional contact behavior of

extensible and flexible strips on rigid grounds and loaded by a transversal pressure.

He also investigated the uplift behavior of the strip. In 1994, Malhotra and Veletsos

([165], [166]) simplified the unanchored tank-liquid system to one degree of freedom

system with rotational spring representing the rocking resistance of the base plate.

The relationship between the base moment and the spring rotation was established

by considering uniformly loaded, semi-infinite, prismatic beams that are connected

at their ends to the cylindrical tank wall. However, the flexibility of the tank itself

was ignored.

1.5.3 Numerical Analyses

The numerical techniques, specially the finite element method, are powerful

tools to analyze the problem of unanchored tanks because of their flexibility and

ability to model all the complications involved with the analysis of such tanks. Many

researchers have employed these techniques to analyze the problem. Auli, Fischer

and Rammerstorfer [11] presented an analysis for uplifting of unanchored tanks in

1985. They used the finite element technique to solve an axisymmetric uplift problem
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whereas the bottom plate experiences a uniform uplift all around circumference. As

an approximation, they considered the tank as a cylindrical shell resting on nonlinear

springs without a bottom plate. Hence, the number of degrees of freedom and the

number of elements were reduced, and no contact elements were needed to model the

bottom plate. The stiffness of the uplifted bottom plate was represented by equivalent

Winkler springs distributed on the lower edge of the shell wall. In order to determine

the nonlinear characteristics of these springs, the bottom plate was modeled as a strip

resting on a rigid foundation, and loaded by uniformly distributed as well as uplift

forces. In addition to these forces, two springs representing bending and extensional

stiffness of the tank wall were introduced at the free end, assuming that the fluid

pressure acted only on the bottom plate and not on the tank shell. Based on resulting

relationship between the uplifting force and the uplifting displacement, the vertical

restraining action due to the weight of the fluid resting on the uplifted portion of

the base plate was obtained and applied around the circumference of the shell. In

Wozniak and Mitchell's model [292], this vertical resistance force was equal to the

maximum hold down force, and was applied around the entire circumference except in

the contact region leading to an overestimation of the resistance of the bottom plate,

whereas in Auli's model this force was a deflection dependent force varied around the

circumference.

Using a general purpose finite element computer code, Barton and Parker [16]

investigated the seismic response of the liquid-filled cylindrical storage tanks. A

time history analysis of a three-dimensional finite element model of an unanchored

tank and its contents with a specified gap conditions between the tank base and the

supporting floor to allow lift-off of the base was performed. Neither material nor

geometric nonlinearities were considered in the analysis and the tank was assumed
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to be subjected to only one direction of horizontal excitation. Furthermore, the fluid

hydrodynamic problem was eliminated by lumping assumed percentage of the fluid

mass to the tank wall and base plate. Results of the investigation indicated that

stresses in the tank and resultant loads on the floor of an unanchored tank were much

greater than those for a rigidly restrained tank and showed the importance of carefully

considering the restraint conditions when performing seismic design calculations on

storage tanks.

In 1986, a simplified method of analysis of unanchored tanks under static lateral

loads was developed by Peek [222]. He used a similar analytical concept to that devel­

oped earlier by Auli et al. The interaction between the shell and the bottom plate was

modeled by placing axial springs all around the lower edge of the shell. Axisymmetric

solution of the bottom plate subjected to a uniform amount of uplift all around the

circumference was used in order to obtain a force-deflection relationship for equivalent

Winkler springs which represent the restraining action of the base plate. Knowing

the relationship between the hold-down force and the uplift displacement, and using

axisymmetric shell elements, the analysis of cylindrical shell was performed based

on linear shell theory. It was also assumed that both the base plate and the shell

remain elastic, and foundation is rigid. In a following work, Peek [219] used the finite

difference energy method in conjunction with a Fourier series representation of the

circumferential variation of displacements and obtained a numerical solution of two

dimensional contact problem of a base plate under static lateral loads. Nonlinearities

due to contact finite displacements and yield of the steel were included in the anal­

ysis. The equations for the shell were linearized to uncouple the equations for the

Fourier displacement coefficients in the cylindrical shell and to enable the degrees of

freedom for the shell to be eliminated by means of static the condensation at a little
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computational cost. He compared the analytical results to experimental results and

reported that they were in good agreement in some cases and not so good in others.

He discussed a number of effects that could give rise to such differences and stated

that in most cases they represent experimental conditions that were not known or

modeled in the analysis. The analysis results were also compared to those from a

simplified analysis in which the hold down action of the base plate was modeled by

means of nonlinear Winkler springs. Peek concluded that large membrane stresses

developed in the bottom plate carry most of the load on the uplifted region. In

addition, Peek and Jennings [221] suggested that in order to increase the capacity

of an unanchored tank to withstand lateral loads due to tilting, tank wall could be

pre-uplifted all around the circumference by means of a ring filler. Depending on the

frequencies of earthquake, lateral loads generated by ground motion for a preuplifted

tank could be higher or lower than those for a tank without preuplift. However, they

recommended that further investigations are needed to study the effectiveness of the

method and to investigate the behavior of the base plate of a pre-uplifted tank before

and after the earthquake.

In 1988, Haroun and Badawi [12] modeled the base plate in both its strip and

circular configurations and investigated its nonlinear behavior under equivalent static

uplifting forces using an approximate energy-based approach. This analysis differs

from other available analyses in that the plate is modeled as a circular plate with an

uplifted, crescent-shaped region rather than being modeled as a strip. The behavior

of the plate under both small and large deflection assumptions, and the effects of

stretching of its midplane were studied. The reliability of the crescent-shaped model

was confirmed through a comparison with the analysis of an axisymmetric circular
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model. The governing set of nonlinear equations was derived for the system by mini­

mizing its potential energy with respect to the generalized coordinates. Upon solving

these equations, the bending moments and stresses were evaluated throughout the

plate by making use of the generalized coordinates. Results of these models clearly

showed that for moderate values of the ground acceleration, the membrane actions de­

veloped in the plate increased its load-carrying capacity, yielding a much lower value

for uplift displacements. They noted that the analysis under axisymmetric conditions

yielded results comparable to those of the asymmetric case, but the former analysis

is much simpler; it showed that the assumed deflection shape of the plate is an im­

portant factor only under small deflection assumptions since the solution is governed

by the bending actions. Under large deflections, the membrane actions dominate and

loads are carried mainly by inplane forces. A concurrent work, also was performed

by Haroun and Bains [13], sought the same characteristics of the base plate by a

nonlinear finite element shell program to study the static behavior of uplifted unan­

chored tanks. The program was extended to analyze the base plate and to assess the

accuracy of the developed simplified energy-based models. A mesh generation scheme

was used for the plate and an iterative scheme was adopted to find the location of

the periphery of contact area. This area was found to be more as an ellipse rather

than a circle but the corresponding changes in the maximum uplift length and the

maximum uplift displacement were found to be negligible. It was shown that uplift is

greatly reduced if the outer edge of the plate is restrained against rotation. Although

the two approaches are different, they conform in results and conclusions.

In 1990, Yi and Natsiavas [294] presented a finite element model for the seismic

response of liquid-filled tanks. They discretized the shell structure using cylindrical

finite elements and applied Hamilton's principle in the structural domain to obtain
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the equations of motion for the coupled fluid-structure system. The above analytical

procedure eliminated the fluid hydrodynamic problem by employing the closed form

solution for the hydrodynamic response problem, resulting in a compact system of

equations of motion. Primary attention was paid to the formulation of the nonlinear

base uplift problem. Effects due to the shell and ground flexibility also were included.

1.6 Simplified Design Guidelines

In addition to the conventional design standards and codes; The New Zealand

recommendations [195], AWWA DI00 [6] and API 650 Standards [7], the seismic de­

sign of cylindrical tanks was discussed by many investigators. DRS Consultants [274]

provided seismic verification of nuclear plant liquid storage tanks. Scharf et al [243]

proposed rules for the design of unanchored liquid storage tanks. They described

the present code as insufficient for the earthquake resistance design. Adams [3] de­

veloped a set of design rules that permit assessments to large liquid storage tanks.

These rules have proposed to form an Appendix to the new British Standard BS7777.

Kelly et al [138] examined conceptual methods and design issues of installing seismic

isolators beneath liquid storage tanks. The performance of isolated tanks was then

assessed with the use of two case studies. Tedesco [267] summarized the results of a

comprehensive analytical investigation concerning the seismic analysis of ground sup­

ported circular cylindrical liquid storage tanks subject to a horizontal component of

an earthquake ground motion. A procedure to evaluate the dynamic seismic response

of a wide range of cylindrical liquid storage tanks was developed and incorporated

into a BASIC computer program.
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Shimizu ([252], [253], [254]) presented methods for seismic design of liquid stor­

age tanks which account for the soil effect. In a following work [251], he presented

a review of seismic studies and design of cylindrical liquid storage tanks. Sone and

Suzuki [259] presented a calculation method from the viewpoint of the aseismic de­

sign convenience for liquid storage tanks and various piping systems established in

industrial facilities such as petrochemical plant complexes. Utilizing the results ob­

tained in the previous studies, he prepared a numerical diagram for various system

parameters. Hashimoto et al [80] evaluated the seismic capacity of tanks against the

potential failure modes of such tanks. Melerski [179] developed a simple method to

analyze axisymmetric cylindrical liquid storage tanks. He further implemented the

analysis into a computer program [178]. Veletsos [280] developed guidelines for de­

signing of liquid storage tanks. Liu et al [155] presented a development and survey

of some of the available analysis methods at that time.

1.7 Contribution of Research on Fluid Dynamics

1.7.1 Free Surface Sloshing Analysis

Sloshing is a free surface flow problem in a tank which is subjected to forced

oscillation. Clarification of the sloshing phenomena is very important in the design

of the tank. The violent sloshing creates localized high impact loads on the tank

roof and walls which may damage the tank. Early simulations of the liquid sloshing

problem have mostly been performed with waves of small steepness. The sloshing

height was assumed to be too small so that the nonlinear boundary conditions may

be neglected. Jacobsen [129] determined hydrodynamic pressures on a cylindrical
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tank. Graham and Rodriguez [71] gave a very thorough analysis of the impulsive and

convective pressures in a rectangular container.

The most commonly applied idealization for estimating liquid response in seis­

mically excited rigid, rectangular and cylindrical tanks was formulated by Housner

[112] in 1957. He divided hydrodynamic pressures of contained liquid into two compo­

nents: the impulsive pressure caused by the portion of the liquid accelerating with the

tank and the convective pressure caused by the portion of the liquid sloshing in the

tank. The convective component was modeled as a single degree of freedom oscillator.

The study presented values for equivalent masses and their locations which duplicate

forces and moments exerted by a liquid on a tank. Properties of the mechanical model

can be computed from the geometry of the tank and the characteristics of the con­

tained liquid. Housner's model ([111], [112]) is widely used to predict the maximum

seismic response of tanks by means of a response spectrum characterizing the design

earthquake ([272], [292]).

In 1989, Mclver [177] considered the two-dimensional sloshing of a fluid in a

horizontal circular cylindrical container and the three-dimensional sloshing of a fluid

in a spherical container. He used the linearized theory of water waves to determine

the frequencies of free oscillations under gravity of an arbitrary amount of fluid in such

tanks. Special coordinate systems were used and the problems were formulated in

terms of integral equations which were solved numerically for the eigen values. Tables

of the sloshing frequencies were presented for a range of fill-depths of the containers.

It was not until late that researchers started to investigate the nonlinear fluid

sloshing problem. Numerical methods presented previously for the sloshing analy­

sis can be roughly classified into three methods: the finite difference method, the
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boundary element method and the finite element method. In 1963, Hutton [118]

and Kamatsu [136] obtained nonlinear frequency response curves of a liquid by using

perturbation techniques. They also studied the stability of the surface sloshing. In

1980, Nakayama and Washizu ([191]' [192]) modeled the nonlinear sloshing by finite

element and boundary element methods and carried out numerical simulations of a

two-dimensional liquid under horizontal and pitching periodic ground motions. In

1986, Ramaswamy [229] modeled the nonlinear sloshing of sinusoidally-excited liq­

uids with viscous damping. In a following work [228], he used a Lagrangian-Eulerian

finite element method to model the free surface fluid flow.

In 1987, Yamada [293] discussed the effect of nonlinear boundary conditions at

the liquid surface on the sloshing heights in cylindrical tanks under horizontal and

vertical ground motions. Based on a comparison with data obtained by linear anal­

ysis, he reported that this effect depends mainly on both the dimensionless sloshing

height and the dimensionless liquid depth, as far as a small sloshing height is con­

cerned. He proposed a simple formula for estimating this effect. On the basis of the

large sloshing heights recorded during the 1983 Nihonkaichubu earthquake, he esti­

mated the sloshing heights under nonlinear conditions to be about 10-25% larger than

those calculated under linear conditions. Taking this into account, he stated that the

response spectra of relatively long-period ground motions deduced from the recorded

sloshing heights are nearly equal to the two-dimensional response spectra calculated

from strong-motion seismograms. In the same year, Ibrahim [122] has conducted ex­

perimental investigations concerning the liquid sloshing in an excited tank. In 1988,

Lepelletier [152] developed a nonlinear model to describe the fluid motion in a tank.

He studied the liquid response behavior near resonance and the transient behavior
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of liquid in the sense of modal superposition when the liquid is subjected to steady­

state periodic basin excitations. It was observed that shallow water waves predicted

by linear theory becomes inadequate near resonance and that the wave shape is very

sensitive to the frequency of excitation near resonance.

The fluid-structure interaction problem with the free surface sloshing was also in­

vestigated. Liu ([154], [156], [157]) presented a variational principle for fluid-structure

interaction problems with sloshing that accounts for both seismic and body forces.

He showed that various fluid-structure interaction formulations may be obtained from

the developed functional. Bauer et al [19] analyzed the nonlinear hydroelastic vibra­

tions of two cases of an infinitely long rectangular container of finite width and filled

to a certain height with a compressible and non-viscous liquid. The first case was

that in which the free surface was covered by a flexible membrane, exhibiting a non­

linear stress-strain relation and large oscillation amplitudes. This system exhibited a

hard vibration. In the second case the hydroelastic vibrations of a liquid with a free

surface, performing large amplitudes, and a nonlinear flexible membrane bottom has

been treated. The influence of various system parameters on the coupled natural fre­

quencies was investigated. The liquid exhibited a softening vibration characteristic,

while the membrane shows a hardening effect, which with the increase of membrane

prestrain could change to a soft vibration.

In 1989, Barron and Chng [15] studied fluid sloshing problems in circular con­

tainers by both theoretical and experimental methods. A circular cylindrical container

with various levels of fluid attached to a low frequency suspension was analyzed by

means of the method of asymptotic expansion. Experimental studies in the form of

resonance and transient vibration tests have been conducted on a test rig. A theoret­

ical analysis was applied to a mathematical model of the test rig. The equations of
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motion were simulated by a digital simulation method, for both linear and nonlinear

conditions. Results showed parametric resonance effects of the fluid wave height and

a horizontal fluid force wave forms. Kobayashi et al [140J conducted experimental

and analytical study to determine the liquid natural frequencies and the resultant

slosh forces in horizontal cylindrical tanks. They presented a study of the liquid

sloshing response for small and large wave heights. In the former case, they presented

an effective calculation method of the longitudinal slosh response by substituting an

equivalent rectangular tank for a horizontal cylindrical tank. In the latter case, im­

pulsive sloshing forces were observed for longitudinal excitation when the slosh liquid

hit the top of the tank. They reported that the measured slosh forces including the

impulsive forces were larger than the calculated ones.

Nash et al [193J treated large amplitude surface waves by expanding liquid

elevations above mean free surface and velocity potentials in terms of a power series

involving a dimensionless parameter which is a function of the peak amplitude of

the tank excitation as well as the tank radius. Minowa [182J performed a similar

study and concluded that the deformation of side walls produced the heaving type

sloshing mode. He tried some nonlinear and linear sloshing analyses to reach a better

understanding of the high sloshing waves. Popov et al [225J presented a numerical

solution of the nonlinear liquid motion in a horizontal cylindrical container with

circular cross section. They discretized and solved the 2-D governing differential

equations in an Eulerian mesh. Li et al [153J obtained the critical stability conditions

for large amplitude water wave oscillations.

In 1991, Krasnopol'skaya et al [143J studied the possible modes of vibration of

the free surface of a liquid in a rigid container. They presented results of a study

on interaction of regular and chaotic vibrations of the free surface of a liquid inside
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a rigid cylindrical shell, excited by an electric motor. In 1992, Kurihara et al [144]

investigated experimentally the sloshing impact on a roofed tank. They proposed

a formula to predict the impact pressures caused on the roofed liquid tanks due to

sloshing. Hwang et al [121] employed the panel method, which was based on the

boundary integral technique, to investigate the three dimensional sloshing problem.

In 1993, Veletsos [276] investigated the sloshing action of layered liquids in rigid

cylindrical and long rectangular tanks. The analysis was formulated for systems with

N superimposed layers of different thickness and densities. In the same year, Isaacson

[124] studied the earthquake-induced sloshing in rigid circular tanks.

In addition to these investigations, shaking table tests were conducted by Okamoto

et al ([207], [208], [209]) to simulate the two-dimensional liquid sloshing behavior.

They also performed numerical simulations for the sinusoidally-excited liquids by

employing the Lagrangian-Eulerian finite element method. They considered the large

amplitude 2-D sloshing wave in a multi-sloped wall tank with roof. In this investiga­

tion, the developed analysis accommodates double-valued free surface function.

Prediction of the transient response of liquid subjected to seismic-type ground

excitation has not been attempted until recently due to the complex nature of the

physical and numerical behavior of liquid under prolonged transient and steady state

base shaking. Haroun and Chen ([32], [90]) addressed the sloshing phenomenon in

seismically-excited rectangular liquid storage tanks. They employed a semi-analytical

method to study the effect of large amplitude sloshing on two-dimensional tanks

under arbitrary horizontal excitations. The nonlinearity of both the kinematic and

the dynamic conditions was considered. Because the location of the free surface is

unknown, a numerical scheme was developed to transform a two dimensional uniform

rectangular grid into boundary conforming curvilinear grid with prescribed arbitrary
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boundaries. A set of governing nonlinear equations was obtained and solved in the

uniform rectangular mesh by employing a finite difference scheme. Three-dimensional

large amplitude sloshing in rectangular tanks has also been attempted. Su ([261],

[262]) has performed numerical simulation of the three-dimensional large amplitude

liquid sloshing in rectangular containers subjected to vertical excitation.

1.7.2 Fluid-Structure Interaction

The dynamic interaction between an elastic structure and a fluid has been the

subject of intensive investigations in recent years, e.g. ([45], [57], [67], [73], [161], [163],

[232], [255]). Since analytical solutions procedures are available only for very simple

problems, numerical approaches, which can be formulated in the time or frequency

domain, had to be employed, e.g. ([54], [131], [150], [210], [241], [242]). Vonestorff et

al [285] investigated the coupled fluid-structure systems subjected to dynamic loads

using the finite element and boundary element methods. Feng et al [58] analyzed

the nonlinear three dimensional fluid-structure interaction by using the finite element

method for the structure and the finite-infinite element method for the fluid. The

infinite element was also used by Olson [211] to present a procedure to analyze fluid­

structure interaction.

Since the variational principles are employed to derive numerical solutions, many

researchers have attempted to derive variational principles for different classes of the

fluid-structure interaction problems. Pinsky and Abboud [224] proposed two mixed

variational principles for transient and harmonic analyses of non-conservative coupled

exterior fluid-structure interaction systems. Kock and Olson [141] presented a finite

element formulation directly derived from a variational indicator based on Hamilton's
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principle. Liu [157] presented a general variational principle for fluid-structure inter­

action problems with sloshing. Abboud [1] proposed a mixed variational principle for

transient and harmonic analysis of nonconservative coupled structure-exterior fluid

systems. The formulation provided a basis for finite element approximation which

is applicable to the analysis of radiation from shell structures with viscoelastic com­

pliant coatings. In addition to the variational principles, energy methods have been

employed to investigate the problem. Zeng et al [298] developed an energy-based

symmetric coupled finite element and boundary integral method which is valid for all

frequencies.

The size of the coupled fluid-structure interaction problem is generally large.

Many researchers have attempted to reduce the problem size in different ways. Seybert

[247] employed Ritz Vectors and Eigenvectors along with a combination of finite el­

ement and boundary element methods to reduce the problem size. Haroun [106]

employed a boundary integral technique to evaluate the added mass matrix to the

tank shell due to the fluid. Rajasankar et al [227] presented the results of investi­

gations conducted to evaluate the added mass to represent the fluid effect in 3-D

problems.

Out of all the work done in the area of developing a finite element method

for fluid-structure interaction problems, two approaches predominate. In the first

approach, the displacement based method, the displacements are the nodal variables

in both the fluid and the structure. Belytschko and Kennedy ([20], [21], [22]), Bathe

and Hahn [18], Nitikitpaiboon and Bathe [202] and Chopra et al [34] described the

method in detail. This approach is not well suited for problems with large fluid

displacements. Another difficulty with this method is that special care must be taken

to prevent zero-energy rotational modes from arising. In the second approach, the
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potential-based method, displacements remain the nodal variables in the structure,

while velocity potentials or pressures are the unknowns in the fluid. Zienkiewicz and

Newton [301], Morand and Ohayon [185], Everstine et al ([55], [56]), Olson and Bathe

([212], [213]) and others ([77], [206], [300]) demonstrated techniques for formulating

finite elements using potential-based methods. In all these works, only a linearized

version of the problem has been considered.

Several finite element studies have considered the gravity and free surface effects

along with the fluid structure interaction. Wilson and Khalvati [291] incorporated the

gravity and the free surface effects in a displacement-based method with rotational

constraints. They demonstrated results for both a static and a dynamic floating

body problem. Their method necessitates the use of a reduced integration scheme to

prevent element locking. Aslam [10] incorporated the linearized dynamic free surface

condition into a velocity potential-based finite element fluid formulation, but did not

consider the fluid-structure interaction problem. Ohayon [205] included gravity terms

in a displacement-based finite element method for fluid-structure modal analysis.

The search for variational principles resembling Hamilton's principle for fluid

mechanics problems has concerned many researchers including Seliger and Whitham

[245], Miles [180], Serrin [246] and Luke [162]. While Seliger and Whitham have

pointed out that the Lagrangian density for the fluid variational principle is the

pressure, they did not consider the implication of a variable boundary. Luke has

incorporated a variable boundary in his variational principle in order to generate the

governing equations for the special case of gravity waves in an incompressible fluid.

The role of the Bernoulli constant as a Lagrange multiplier constraining global con­

servation of mass was not noted by any of the aforementioned researchers. Kock and

Olson [141] were the first to use Bernoulli constant in there formulation to conserve
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the total mass. Ikegawa and Washizu [123] introduced a variational principle, uti­

lizing the stream function, in order to model incompressible flow with a free surface

under gravity using the finite element method but did not extend their method to the

general compressible fluid-structure problem. More recently, Ecer and his coworkers

([50], [286], [49]) suggested variational approaches for use in modelling incompressible,

viscous fluid flows but have not extended their approach to include fluid-structure in­

teraction. Liu and Uras [157] using a variational principle which is not based on

Hamilton's principle, developed a mixed variational formulation and demonstrated

that several of the fluid-structure interaction formulations already in use can be ob­

tained from it.

Birk et al [24] investigated the influence of fluid-containing appendages on the

dynamic response of multi-degree-of-freedom system subjected to stochastis environ­

mental loads. They expressed the modal properties of the system comprising of a

fluid-containing appendage attached to a multi-degree-of-freedom system in terms of

the individual dynamic properties of the primary and the secondary systems. They

obtained the peak response value at any level on the structure by following the evo­

lutionary distribution of the extreme values and reported that an important feature

of the combined system was that the response of the primary system was suppressed

when one of the sloshing modes of the secondary fluid appendage is tuned to the

fundamental mode of the primary system. They used a building with a water tank

situated at any floor and excited by an earthquake to illustrate the methodology.
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1.8 Soil-Tank Interaction

The problem of soil-tank-fluid interaction was addressed by many investigators.

Haroun and Abdel Hafiz [92] considered soil-tank interaction effects and showed that

it substantially reduced the amplified tank response. Haroun and Abou-Izzeddine

([83]' [84]) performed parametric study on the dynamic soil-tank interaction under

horizontal seismic excitations. Hori [109] presented the effects of soil on the dynamic

response of liquid-tank systems. Fisher et al [65] presented a dynamic response anal­

ysis of vertically excited liquid storage tanks including both the liquid-tank and the

liquid-soil interaction. The system considered was a thin-walled elastic cylindrical

shell entirely filled with an incompressible and inviscid fluid, resting on a flexible

foundation over an elastic halfspace with frequency dependent stiffness and damping

parameters.

Zaman et al [296] developed an analytical formulation to examine the flexural

behavior of rectangular foundations resting on elastic half space and supporting cylin­

drical tanks. The formulation was based on the principle of minimum potential energy

and was applicable to problems having geometric and loading symmetry with respect

to the x and y axes. The deflected shape of the foundation was approximated by a

polynomial in terms of the even powers of x and y, and the contact stress distribu­

tion was assumed to be a function of the foundation deflection. The wall-foundation

interaction was included by modifying the wall deflection function and satisfying the

compatibility conditions applicable to the junction between the foundation and the

tank wall.

Shimizu [254] presented a study which investigated the seismic design of cylin­

dricalliquid storage tanks with a rigid foundation slab resting on elastic soil subjected
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to sway and rocking motions. This study concerned with the derivation of a vibration

for a cylindrical tank as a super-structure. In a following work [253], he presented

a study that concerns the seismic design of a cylindrical liquid storage tank with

rigid foundation resting on elastic soil subjected to earthquake ground motions. He

showed a procedure of a whole vibration model of the tank-foundation-soil system

and proposed a conventional seismic design procedure for the tank. Furthermore,

Shimizu [252] presented a seismic design method of cylindrical liquid storage tanks

resting on elastic soils that are subjected to horizontal ground motions. He derived

equations of motion of a lumped-mass model for describing the coupled motion of the

tank-liquid-foundation system.

Zaman and Mahmood [297] examined the response of a cylindrical storage tank

foundation system using the finite element technique which considered the interaction

between the tank wall foundation and supporting soil medium. Emphasis was given

to modeling of nonlinear deformation characteristics of the interface between the

foundation and the soil medium using a joint element. He presented parametric

studies to assess the effects of depth of foundation embedment, interface roughness,

soil nonhomogeneity, nonlinearity, and relative rigidities of the tank wall-foundation

and soil systems.

Seeber et al [244] presented three dimensional analysis of the dynamic behavior

of liquid filled elastic cylindrical tanks based on flexible grounds, undergoing hor­

izontal and vertical earthquake excitation. The interaction of the ideal fluid with

the elastic shell and with the flexible ground yielded a problem of linear potential

theory which was solved together with the equations of motion of the shell and of

the ground. With the unknown nodal shapes of vibration developed in Fourier and
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in Fourier Bessel series, the partial differential equations were transformed into cou­

pled generalized equations of vibration by a weighted residual approach. The results

showed the strong influence of the flexible ground characterized by a remarkable shift­

ing of natural frequencies, by the existence of additional natural frequencies and by

high damping ratios.

Veletsos et al [278] made a study of the effects of soil-structure interaction on

the response of liquid containing upright circular cylindrical tanks subjected to a

horizontal component of ground shaking. He generalized the mechanical model for

laterally excited rigid tanks supported on a nondeformable medium to permit con­

sideration of the effects of tank and ground flexibilities, and base rocking. Responses

were evaluated for harmonic and seismic excitations over a range of tank proportions

and soil stiffnesses, and the results were presented in a form convenient for use in

practical applications.

Hangai and Ohmori [78] investigated a soil-structure interaction problem which

dealt with the nonlinear contact vibration of a rigid as well as a flexible bar rested

on uniformly distributed Winkler type springs and considered uplift of a portion of

the bar. Bars were subjected to both vertical dead load and time varying moment

around the center of gravity to model the external excitation from the superstructure.

The finite difference method was used in order to discretize the equilibrium equations

of motion, derived under small deflection theory, and the Runge-Kutta method was

applied to the numerical analysis. Hangai and Ohmori concluded that, for a flexible

structure, soil reaction took complicated modes along the time history and vertical

displacement components of the center of gravity played an important role in the

nonlinear soil-structure interaction problem considering uplift.
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Ishida et al ([126], [127]) presented a dynamic mechanical model of a four degree

of freedom mass-spring system for the rocking response analysis of unanchored tanks

by considering the partial uplift of the bottom plate as a rotational spring of bilinear

type. The finite element method was used to analyze the deflection of the bottom

plate by replacing it with an elastic-plastic beam model. Also, they proposed a

calculation method for the bottom plate uplift based on the small deflection theory

and assuming a rigid foundation. They performed a shaking table experiment and a

static tilt test on a stainless steel model tank, provided with a rubber mat in order to

simulate the actual soil foundation effect, and test results were compared with those

obtained from the four degrees of freedom system.

D'Orazio [47] simulated the uplift behavior with model tests and measured

both the amount of uplift and the radial displacements. He gave an interpretation

of the measurements, and illustrated a method for estimating radial displacements

based primarily on deformations at the foundation level. Both flexible and rigid

foundations were considered. Radial displacements of uplifted and anchored tanks

were compared. He concluded that the foundation deformation and uplifting control

the radial displacements.

The settlement of soil due to the large pressure exerted from liquid storage tanks

was also investigated. Ma et al [164] presented analysis of such a system. The analysis

includes the effect of sloshing of liquid in the tank and the associated hydrodynamic

pressure, and the effect of coupling between liquid, tank and soil foundation. The

effect of tank settlement on its response was also presented in ([23], [46], [48], [59],

[60], [1l0], [260], [263], [264]). In addition, analysis and design of the tank foundation

was discussed ([201]' [275], [287]).



50

1.9 Contact Analysis

The evolution of the contact analysis is strongly related to the analysis of unan­

chored liquid storage tanks. The successive contact and separation between tank base

plate and underlying foundation is a special case of the contact problem between two

bodies. However, the developed algorithm handles the contact problem in its general

form which make it necessary to present a brief review of contact mechanics history.

Modern contact mechanics begins in 1882 with the publication of the work by

Hertz [107]. Analytical solutions to the problem were presented before the appearance

of digital computers. These solutions employed the theory of elasticity and were

limited to simple linear cases of contact. Moreover, since for most problems the

exact contact surfaces are not known a prior, their application is further restricted.

Gladwell [68] tackled the problem with the aid of Papkovich-Neuber form of the

equilibrium equations. Signorini [257] formulated the general problem of a linear

elastic body in frictionless contact with a rigid foundation. Shtaerman [256] showed

various solutions using the methods of integral transforms and complex potentials in

theory of elasticity. These methods allowed for a more general analytical treatment

of certain, still very restricted, classes of contact problems. Fichera [63] presented

a formal mathematical treatment of the Signorini problem within the framework of

boundary value problems governed by unilateral constraints. In a following work [62],

he presented a more complete and general solution of the problem.

The numerical techniques are powerful tools to analyze the contact problem

because of their flexibility and ability to model all complications involved with the

analysis of such problems. The finite element method was introduced for the problems

of structural analysis by Turner [271], Clough, [39], and simultaneously by Argyris [8].

Q
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Later the method was extended to structural mechanics, among many other fields, by

numerous researchers. Numerical contact algorithms have been proposed in the early

70s to handle the complex nature of the physical and numerical behavior of contact

problems. Conry and Seireg [40] treated contact problems as quadratic programming

problems. Subsequently, Chan and Tuba [29], Kalker [135] and Panagiotopoulos [214]

among others explored the same line of thought. At the same time, the work of Hughes

[117], based on a Lagrange Multiplier method, significantly contributed to the devel­

opment of robust finite element algorithms applicable to large scale computations.

Glowinski and coworkers [69] offered a comprehensive exposition of various optimiza­

tion techniques and their application to the solution of problems characterized by uni­

lateral boundary conditions. Courant [43] used the penalty approximations to solve

the contact problem. Luenberger [160] reviewed solutions to the contact problem in

his book. Hestenes [108] used augmented Lagrangian methods to solve the problem.

Powell [226] improved this method by combining the classical penalty treatment with

that of Lagrange multipliers to attaining more satisfactory performance than either

one of the above methods when employed separately. A detailed presentation of both

theoretical and some numerical aspects of contact problems is contained in [139].

Recently, several contact algorithms have been proposed [215] and incorporated

into commercially available Finite Element softwares. Bathe and Chaudhary ([17],

[31]) presented a solution methods for the analysis of contact between two or more

contact bodies. In there work, they implicitly enforced the contact constraints using

an augmented Lagrange multiplier technique which seriously affects the quadratic

convergence of the Newton-Rapson method. Eterovic et al [53] proposed a solution

technique to enforce these constraints explicitly by means of a gap function. He

presented a solution technique that admits the use of a line search procedure to enlarge
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the region of convergence. He reported that this approach has significantly improved

the convergence of the analysis, however, it yields unsymmetrical stiffness matrix.

Pian et al [223] derived a modified complementary energy principle by introducing

the continuity at the contact surface as the condition of constraint and the reactions

at contact surface as additional field variables. He outlined an iterative procedure

using a stress hybrid element for incorporation in numerical analyses.



Chapter 2

Nonlinear Dynamic Analysis of

Plates and Shells

In this chapter, a nonlinear finite element formulation is presented for the three

and two dimensional analysis of shells which accounts for large deformation and ro­

tation effects, and accommodates material nonlinearities. The formulation applies to

the practically important cases of shells of revolution, tubes, rings, beams, frames,

arches, plates and doubly curved shells. Transverse shear deformations and geometric

nonlinearities are accounted for. The approach is deduced and adapted from several

other works in the area, [13], [115] and [116].

2.1 Degenerated Isoparametric Shell Element

The analysis of thin-walled structures requires a reduction from three to two

dimensions. This may be carried out before or together with discretization using ei­

ther a plate or shell theory, or directly the three dimensional field equations. Despite

the fact that in both cases the continuum is degenerated to a surface structure, the

53
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term "degeneration" is used only for the latter approach. The simplicity in accom­

modating arbitrarily large deformation and rotation problems is a favorite advantage

to degenerated curved shell elements.

2.1.1 Basic Assumptions

The shell theory used is based on a degeneration of 3-D elasticity using the

following three assumptions

1. Normals to the shell middle surface before deformation remain straight, but not

necessarily normal to the middle surface after deformation.

2. The normal stress, in the thickness direction, is zero.

3. The shell thickness remains constant during the deformation

Assumption (1) is equivalent to taking into account the effect of transverse shear

deformation and it has been widely used in recent years both in the context of linear

and nonlinear analysis of shells. On the other hand, assumption (2) is the typical

plane stress condition, traditionally used in plate and shell theory. This condition,

namely plane stress hypothesis, is then used to reduce the three-dimensional consti­

tutive relations to surface ones. Finally, assumption (3) implies that the thickness of

the shell, measured along the fiber direction, at each point does not change in dif­

ferent deformed configurations of the shell, which implies zero strain along the fiber

direction. This last assumption, namely fiber inextensibility condition, is essential for

an adequate kinematic description of the large rotations of the fiber directions.
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Coordinate Systems

Four different coordinate systems have been used in the development of the

curved degenerated shell element. These coordinate systems are defined as follows

1. The global Cartesian coordinate system which is used as a fixed reference frame

for the shell motion, deformation and geometry. The unit vectors i, j and k are

in the directions of X, Y and Z, respectively.

2. The nodal vectors system denoted by VIi, v2i and V3i for node i with its origin at

the midsurface. This system is used as a reference frame for the rotations. The

nodal vector V3i represent the fiber direction which determines the direction on

which the fiber inextensibility condition is enforced, and is given by

(2.1)

where x t and x b are the coordinates of node i on the top and bottom shell
t t

surfaces, respectively. The other two nodal vectors are picked up such that if

V3i is close to k, then VIi and V2i are close to i and j, respectively. Figure (2.1)

shows the algorithm used to satisfy this condition.

3. Natural coordinate system ~, T/ and ( in which ~ and T/ lie in the middle plane,

whereas the linear coordinate ( spans the thickness direction.

4. The lamina system denoted by x', y' and z' is defined at each integration point

to describe the directions in which the stresses and strains are obtained. The

constitutive relations are written and reduced with respect to this coordinate
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system. The direction Zl is the direction in which the zero normal stress condi-

tion, (}Zl = 0, is satisfied. As shown in Figure (2.2), the vector Zl is constructed

to be perpendicular to the midsurface at the integration point, while x' and y'

vectors are constructed to be as close as possible from the unit tangent vectors

to the eand Tl coordinates, e.; and e.,." respectively. This is achieved as follows

e.; ox Illoxll
oe oe

e.,., ox Illoxll
OTl 0Tl

I e.; x e1/z
lie.; x e.,.,11

ea
~ [e.; + e.,.,]

II ~ [e.; + e.,.,] II
Zl X eae{3

Ilz' x eall
I ea - e{3x

V2
I ea+ e{3

y
V2

(2.2)

(2.3)

(2.4)

(2.5)

(2.6)

(2.7)

(2.8)

It is worth noting that V3i can be obtained as the effective normal vector to the

isoparametric shell surface at each node. Alternatively, it could be a given thickness

direction, not necessarily orthogonal to the shell middle surface, specified for each

node. This latter definition, adopted in this work, is useful for avoiding geometry

discontinuities in folded shell situations.

For the purpose of transformation between various coordinate systems, the fol-

lowing two transformation matrices [q] and [8] are constructed from the lamina and

nodal vectors, respectively. The matrix [q] transforms from the global system to the

lamina system and given as

q = [x' y' z/f (2.9)
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Figure 2.1: Nodal Coordinate System

1]

\
X

Figure 2.2: Lamina Coordinate System
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while the matrix [8] transforms from the nodal system to the global system and given

as

(2.10)

Figure (2.3) shows the relationship between the various coordinate systems.

[J]
Global .. Natural

[s]

Nodal

[q]

[q] [s]
-------~. Lamina

Figure 2.3: The Relationship Between the Coordinate Systems

Geometric Description

The geometry of a typical three dimensional shell element is defined using the

Cartesian coordinates of the top and bottom surfaces corresponding to each node,

thus

or consizly as

X

Y

z

Xt x b
t 1.

n 1+( 1-(L Ni(~, 1]) t b-- Yi +-- Yi
i=l 2 2

zt zb
t t

Xi
n

L Ni(~, 1]) Yi
i=l

z·t
<.;

n

X = L Ni(~, 1])Xi<';
i=l

(2.11)

(2.12)

(2.13)
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where the index i refer to the i'th node and n is the number of nodes per element.

In order to construct the Jacobean matrix, the natural coordinate derivatives are

obtained as

ox t oNi(C7])
o~ . o~ Xi( (2.14)

7.=1

ox t oNi(C7])
(2.15)- o Xi(07] i=l 7]

ox
1t [t b] (2.16)

o( '2. Ni(~, 7]) Xi - Xi
7.=1

The Jacobean matrix required to transform derivatives between the global and natural

coordinate systems is then given by

(2.17)

Kinematic Description

The kinematics of the shell element are defined by invoking the isoparametric

hypothesis that the same expressions are used for kinematics as for geometry with

displacement variables in place of coordinate variables. This assumption leads to

or concisely

U 'iIi.
n (ti

V = LNi(~,7]) Vi + -RB
i=l

2 "7.

W W'7.

n [(t]u = ~ N·(t: '11) u' + -"R·O·o 7. <",./ " 2 1."

1.=1

(2.18)

(2.19)

where 'iIi, Vi and Wi are the middle surface displacements at node i in the X, Y and

Z directions, respectively, and ti is the shell thickness at node i computed as

(2.20)
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At this point, there are two possible choices for the rotation vector f): either the

rotations around the global axis or the rotations around the vectors VIi and V2i are

used. Thus,

0 V3z -V3y ex

R·f) -V3z 0 V3x e y (2.21)1. t

V3y -V3x 0 e z

or

[ -V2i V" ]{
e l },Rf) (2.22)'I, 1,

e 2

The global rotations are required when other elements that uses global rotations are

used with the degenerated shell element. In such a case, special attention has to be

paid to the drilling degree of freedom to avoid singular stiffness matrix.

Strain-Displacement Matrix

In application to shells, special attention needs to be given to transverse shear

and membrane components to prevent the mesh locking phenomena. A particularly

effective treatment may be performed by employing the reduced selective integration

concept. In the present formulation, the strain-displacement matrix is formulated

such that each component is separated from the others. This is achieved through the

following definition of B

(2.23)
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where n is the number of nodes per element. The strain-displacement transformation

may be written as

Ex'
au'
ox'

Ey'
ov'
oy'

}n {
u·

ov' ou' =LBi
1.

(2.24)E= /x'y' ox' + oy'
1.=1 ().

ov' ow'
,

/z'y' oz' + oy'

au' ow'
/z'x' oz' + ox'

where E is the strain vector with its components in the lamina coordinate system. The

main reason behind this choice for the strain vector components is to facilitate the

separation between various strain components. Therefore, the B i matrix is written

in the form

B MN B~B

B i = B Ms B~s

B TS Bfs

III which the subscripts M N, M B, M S, B Sand T S denote membrane normal,

membrane bending, membrane shear, bending shear and transverse shear compo-

nents, respectively. In order to find these components the displacement vector given

by Equation (2.19) is transformed to the lamina coordinate system. Thus,

(2.26)

taking the derivative of u l with respect to Xl, yl and Zl gives

aul t [aNi u + ~ a ((Ni ) R. (). ] (2.27)-
axl a Iq 1, 2 a I q 11,

i=l X X

aul t [aNi -. + ~ a ((Ni ) R.().] (2.28)
ayl a I qu, 2 a I q 1 ,

i=l Y Y

aul t [aN i u' ti a ((Ni ) R. (). ] (2.29)- alq'+2 a l q 12azl
i=l z z
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Thus, the components of the strain-displacement matrix are given as

r aN
0

: ] q

~

B MN
ax'

(2.30)
0 aN·

ay,'"

B Ms [ aNi aNi o ] q (2.31)
ay' ax'

r a~,
aNi

aN, ]
B:z:,s

az' ay'
(2.32)q

0 aNi
az' ax'

r a(N,) 0

: ] qRiB~N
ti ax'

(2.33)
2 0 a((Nil

&Ii'

B~s ti [ a((Ni ) O((Ni) o ] qR i (2.34)2 ay' ox'

t r 0
a((Ni) D(N,) ]

() i o((N.)

aT" oy'
(2.35)B TS qRi

0 O((Ni)
az' ax'

where the derivatives of the shape functions with respect to the lamina coordinate

system are given by

Mass Matrix

~
ox'

aNi
oy'

aNi
oz'

J - I=q

o

(2.36)

The consistant mass matrix for curved shells is computed by performing a vol-

ume integration over the element domain, as follows

M

A

l/ATA dD

[AI A 2 ... J

(2.37)

(2.38)

(2.39)
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N 1, o

o

N "

o

o

N·1,

(2.40)

(2.41)

where the subscript i denotes the node number.

For degenerated shells, the terms that correspond to the translational degrees of

freedom are dominant as compared to the rotational terms. Sometimes, it is desired

to diagonalize the resulting matrix to simplify the analysis and to avoid ill-conditioned

mass matrix. In this work, Hinton technique is used to diagonalize the mass matrix.

This is achieved by setting the entries of the lumped-mass matrix proportional to

the diagonal entries of the consistant mass. The constant of proportion, selected to

conserve the total element mass, is computed as follows

M t LpdD (2.42)

Md fl pNldD (2.43)
i=l n
M t (2.44)a = -
M d

where M t is the total element mass, M d is the sum of translational diagonal entries

of the consistent mass matrix and m is the total number of translational degrees of

freedom. The rotational diagonal and off-diagonal terms are then set to zero.

Fiber Numerical Integration

In the general nonlinear case, fiber integrals need to be evaluated by a numerical

integration technique. Several ways of going about this present themselves, each

having advantages in certain circumstances.
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If the integrand is a smooth function of (, e.g. when the shell consists of one

homogeneous elastic layer, then Gaussian quadrature is most efficient. For the case

when the reference surface is taken to be in the middle, the one point Gauss rule only

senses membrane effects. At least two points are required to manifest the bending

behavior. If it is desired to include the outermost fiber points, i.e. ( = ±1, in the

evaluation, then the Lobatto rules are most accurate. The two point trapezoidal rule

and the three point Simpson's rule are the first two members of the Lobatto family.

In the case when the shell is built up from a series of layers of different materials

such that the material properties and stresses are discontinuous function of (, then

Gaussian rules may be effectively used over each layer. If there are a large number

of approximately equal-sized layers, then the midpoint rule on each layer should

suffice. On the other hand, if there are a small number of layers or if the layers

vary considerably in thickness, then different Gaussian rules should be assigned to

individual layers. This is facilitated in this work by allowing the user to choose from

different integration rules or input the location and weights of the fiber quadrature

rule. Thus, any special set of circumstances may be accommodated.

Reduced Selective Integration

It is well known that certain class of problems produce excessively stiff solutions

when the degenerated shell elements are used to solve them. This is attributed to

that the degenerated shell elements are not capable to represent pure bending without

shear or membrane effects which causes the shear locking and membrane locking

phenomena. The shear locking phenomenon is caused by two main reasons
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1. Some shape functions lead automatically to shear in pure bending because the

transverse shear energy does not diminish as desired if the shell becomes thin

2. Sometimes, the transverse shear stiffness dominates the bending stiffness leading

to an ill conditioned stiffness matrix.

Membrane locking is present in most curved elements but is less pronounced for higher

order interpolation polynomials. It should be pointed out that facet shell elements

which are initially free from membrane locking become curved in large displacement

analyses and therefore may show considerable locking during bending deformation.

Several schemes have been proposed in order to avoid locking. The most pop-

ular procedures are uniform or selectively reduced integration. This may result in

undesired internal mechanism which produces hour-glass modes. Even if these zero

energy modes do not exist at the beginning, they may show up in a later deformed

stage. Some procedures are available to control these hour-glass modes.

The method used in this work is the so called b-treatment. In this method, the

reduced components of the B matrix are replaced by an equivalent component B ij

which is computed from

m

Bij(~,7]) = LN1(~,7])Bij(~I,7]I)
1=1

(2.45)

where N l are the shape functions obtained by considering nodes at the quadrature

points, and ~l and 7]1 are the natural coordinates of the reduced integration points.

The strain-displacement matrix is then rewritten as

-=-U

B~BB MN
=

B~s (2.46)B= B MS

= =()

B TS B TS
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where different number of bars represents components that are integrated usmg

different reduced integration rules.

2.1.3 Two Dimensional Element Mechanics

Fiber Direction (11)

\

Y

Figure 2.4: Coordinate Systems for Plane Shell Elements

The two dimensional shell element is deduced from the three dimensional shell

element presented in the previous section. The formulation is reduced by omitting

one coordinate out of each of the coordinate systems used, Figure (2.4), and replacing

the three dimensional plasticity problem with a plane one. The lamina coordinate

system and its transformation matrix q are given in this case as

Xl

I
Y

q

(2.47)

(2.48)

(2.49)
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The fiber direction V2i at node i is given by

Geometric Description

The geometry of a typical plane shell element is also defined using the Cartesian

coordinates of the top and bottom surface corresponding to each node, thus

{:}
or consizly as

n

X = LNi(~)XiT)
i=l

(2.53)

where the index i refer to the i'th node. In order to construct the Jacobian matrix,

the natural coordinate derivatives are obtained as

8x n 8Ni(~)
(2.54)

8~
L 8~ XiT)
1.=1

8x 1t [t b] (2.55)- "2. Ni(0 xi - Xi
81] 1,=1

The Jacobian matrix required to transfer derivatives between the global and natural

coordinate systems is then given by

(2.56)
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Kinematic Description

The kinematics of the plane shell element are defined also by invoking the

isoparametric hypothesis which leads to

or concisely

} + t
i

"7 Re ·12 ~ 1. (2.57)

(2.58)

where Ui and Vi are the middle surface displacements in the X and Y directions at

node i, respectively, and R i is the rotation arm vector at node i given by

{

-V2y }

R
1

= 1.V2x

Strain-Displacement Matrix

(2.59)

As mentioned in the previous section, the following definition of the strain vector

is required to support the selective reduced integration

Bu'
Ex' Bx'

}n {
u·

Bv' Bu' =LBi
1.

(2.60)E= IX'Y' Bx' + By'
1.=1 e1.

:Y:
Ez ' x

in which Ez ' = 0 in case of plane shell. This definition yields the following strain-

displacement matrix

BltfN BffB

Brs B~s

B U BeH H

(2.61)



69

where the subscript H denotes the hoop strain components which are non-zero only

in case of axisymmetric shell. In order to find the strain displacement matrix, the

displacement vector given by Equation (2.58) is transformed to the lamina coordinate

system. Thus,

Taking the derivative of u' with respect to x' and y' gives

(2.62)

AU'

ax'
au'
oy'

(2.63)

(2.64)

Thus, the components of the strain-displacement matrix are given as

B%fN [ aN; o ] q (2.65)
ax'

B rs [ aNi aNi] q (2.66)
ay' ax'

B U
[ ~i o] (2.67)H

e t· [ o] qR iBBN
~ a(ryNi) (2.68)
2 ax'

e t· [ a(ryNi ) ] qR· (2.69)B TS
~ a(ryNi)
2 ay' ax' 1.

Be [ rytiNi o ]{Rd (2.70)H 2x

Mass Matrix

The consistant mass matrix for plane and axisymmetric curved shells is com-

puted by performing a volume integration over the element domain, as follows

M

A

l/ATAdrl

[AI A 2 ... J

(2.71)

(2.72)
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A· [Ni Zi]"

f
N

~; ]
1.

N·
" 0

Z·
ti

- 'T]N-R1. 1. 2 1.

(2.73)

(2.74)

(2.75)

where the subscript i denotes the node number.

2.1.4 Geometric Nonlinearity

In the analysis of shells, two types of geometric nonlinearities, namely large

deformation and large rotation nonlinearities, may arise. Large deformation nonlin-

earity is attributed to the membrane stress developed due to the midplane stretching

when the shell experience large displacements as compared to its dimensions. Large

rotation nonlinearity is caused by large change of element slope during the analysis.

This change causes the transformation matrix to change during the analysis. It also

causes the relationship between the displacement field and the nodal rotation to be

trigonometric, Figure (2.5).

The objective of the analysis is to evaluate the equilibrium positions of the shell,

at the discrete time points or load levels 6.t, 26.t, 36.t, 46.t, ... , t, t+6.t. It is assumed

that the solution for the kinematic and static variables for all time steps from time zero

(initial configuration) to time t, inclusive, have been obtained, and that the solution

for time t + 6.t is required next. Two approaches may be used to handle geometric

nonlinearities: Updated Lagrangian description and Total Lagrangian description.

The Updated Lagrangian description uses the last known deformed shell geometry

at time t as a reference configuration for all variables, whereas the total Lagrangian

description uses as a reference configuration the initial undeformed shell geometry.
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/1-;. .

V3 (t+o.t)

()

-;.

VZ(t)

Figure 2.5: Finite Rotation of the Fiber Direction

The first approach is general and suitable for both nonlinearities while the second

approach in this section is developed only to handle large deformation effects.

Updated Lagrangian Description

Geometric update is incrementally performed by superimposing the current time

step incremental displacement vector to the previous time step geometry. The new

geometry is then given as

X (H.6.t) X(t) + DU(H.6.t)

t
X(H.6.t) + ; R D0(t+.6.t)

ti
X(H.6.t) - '2 R DO(H.6.t)

(2.76)

(2.77)

(2.78)

It should be pointed out that Equations (2.77) and (2.78) are first order accurate in

enforcing the fiber inextensibility condition. This condition requires that the thick-

ness of the shell measured in the fiber direction to remain the same at all times. If
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the change in rotations is relatively large during the time step, an error may occur as

shown in Figure (2.6). This error may be reduced either by using second order coor-

dinate update or by using smaller time step. Alternatively, as shown in Figure (2.5),

the new fiber direction and updated nodal coordinates at time t+6.t may be obtained

as

be2 bel
be sin be VI (t) - be sin be V2 (t) + cos be V3 (t)

t·- 1.

X(t+b..t) + '2 V3 (t+b..t)

t 1.

X(t+b..t) - '2V3 (t+b..t)

(2.79)

(2.80)

(2.81)

Fiber Direction at
Time (t+ ~t)

Sphere of radius t;~

Fiber Direction at
Timet

Nodei

Figure 2.6: Geometric Update Error

Total Lagrangian Description for Three-Dimensional Shells

In some cases, the deformed geometry does not show large change in slope but

still indicate relatively large displacements. In such cases, it is desired to include the

effect of large displacements into the strain displacement matrix and use the original

geometry in the analysis. This is achieved by adding the additional membrane strains

caused by the large displacements. Following the work presented in [13], the strain
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vector is written as

Ex' au' -qow'fax' 2 ax'

Ey' ov' 1 [ow'foy' "2 oy'
E = Eo + El = ov' au' + ow' oW'

IX'Y' ax' + oy' ax' oy'
ov' ow' 0IZ'Y' oz' + oy'
au' ow' 0IZ'X' oz' + ax'

t(Bo+Bi)i { Ui }~=1 Oi

(2.82)

(2.83)

where B o is the linear strain-displacement matrix computed as before and B l is the

nonlinear strain-displacement matrix. In order to find Bl
1

the nonlinear strain com-

ponent is rewritten as

ow' 0ax'

0 ow'
oy'

{
ow'

} ~ ~ [D]{'ol
1 ow' ow' ax' (2.84)El ="2 oy' ax' ow'

0 0
oy'

0 0

where E c is the strain vector that couples the membrane strain to the out of plane

displacements. These coupling strains are related to the nodal degrees of freedom by

(2.85)

The matrix B l is then given by

r
oo

o 0

(2.86)

(2.87)
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(2.88)

In large deformation analysis, the strain vector is incrementally updated after

each time step by

(2.89)

The stiffness matrix is then given by

(2.90)

Total Lagrangian Description for Two-Dimensional Shells

In case of plane and axisymmetric shells, the formulation is deduced from the

three-dimensional shell formulation. The strain vector is given by

lO

u
x

1. [OV/]2
2 ox l

o

o

(2.91)

(2.92)

where EZI = 0 in case of plane shell. The nonlinear strain component is rewritten as

1 av'
lOl = "2 ax' o

o

(2.93)
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The coupling strain is related to the nodal degrees of freedom by

(2.94)

The matrix B" is then given by

[0 ~~: ][q]

¥[0 8~:;)] [q]{Ri }

The stiffness matrix is then given by

2.2 Computer Implementation and Testing

(2.95)

(2.96)

(2.97)

(2.98)

The previous formulation for the shell element was incorporated into DYNAZ,

the nonlinear multi-system-analysis finite element code. The developed shell element

allows the use of variable nodes to accommodate wide variety of problems and to allow

for appropriate mesh refinements. Several cases are then tested and compared with

other analytical and numerical solutions to verify the correctness of the formulation.
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2.2.1 Two-Dimensional Numerical Examples

Linear and Nonlinear Deflection of a Circular Plate

A circular plate of radius r and thickness t with clamped edges is subjected to

a uniform load q that covers the entire plate. The plate material has a Poisson's ratio

of 0.3 and a Young's modulus of E. The central deflection parameter, W = ¥, is

4
plotted against the load parameter, Q = ~, in Figure (2.7) and found to agree with

the analytical solution presented in [270]. The magnitude of the central deflection

was significantly reduced when large deflection effects were included.
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Figure 2.7: Linear and Nonlinear Deflection of a Circular Plate
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Linear and Nonlinear Deflection of an Infinitely long Plate

An infinitely long plate of width b and thickness t with clamped edges is sub-

jected to uniform load q that covers the entire plate. The central deflection parameter,

W = T' is plotted against the load parameter, Q = 12qbi;4-1I2) , in Figure (2.8) and

found to agree with the analytical solution presented in [270].
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o

Figure 2.8: Linear and Nonlinear Deflection of an Infinitely Long Plate

Linear and Nonlinear Buckling of a Hinged-Hinged Column

A hinged-hinged column of length L and thickness t is subjected to an axial

load p at the end. The lateral central deflection is plotted against the load parameter,

P = Pj;, in Figure (2.15). The column buckles as expected at a load parameter value

P = 7T
2 .
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Linear Buckling
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Figure 2.9: Linear and Nonlinear Buckling of a Hinged-Hinged Column

Large Deflection and Rotation Analysis of a Beam Column

A beam column of length L and cross section area A is subjected to a load W,

as shown in Figure (2.10). The beam is hinged from the left end, and supported

from the other end by a spring of stiffness K s and a roller. The analytical solution

presented in [44] gives the following relation between the load Wand the deflection

w

EA 3 3 2 1 3
W = -(z w + -zw + -w )

L3 2 2
(2.99)

The beam is modeled with one shell element. Different values of the spring stiffness

parameter k = ~A~~ are chosen. Figure (2.11) shows the relation between the load

parameter P = ~~ and the deflection parameter D = ~ which is found to be

identical to the analytical solution. It should be pointed out that if the spring stiffness
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parameter is less than or equal to 0.5, then the displacement control should be used

in the analysis in lou of the load control to achieve convergence.

w

Figure 2.10: Large Deflection and Rotation Analysis of a Beam Column
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Figure 2.11: Large Deflection and Rotation Analysis of a Beam Column: Force­
Deflection Curve

The same problem is also tested in dynamic analysis. The equation of motion

is written for constant applied force W which gives

EA 3 3 2 1 3)
MiiJ + -3 (z W + -ZW + -W = W

L 2 2
(2.100)
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where M = pAL/2. The series solution to the equation of motion gives

The first term of the solution represent the rigid motion of the beam column with no

contribution from its elasticity. This term is found to be dominant when t /.jM is

relatively small. Figure (2.12) shows a comparison between the response time history

of the analytical solution and that obtained from the program DYNAZ.
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Figure 2.12: Large Deflection and Rotation Analysis of a Beam Column: Response
Time History
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Linear Vibration of a Beam

A hinged-hinged beam of length 4 m, width 0.15 m and thickness 0.20 m with

clamped edges is subjected to a suddenly applied load of 5000 N at the middle of

the beam. The beam material has a Young's modulus of 1 x 1012 N/m2 and mass

density of 100 kg/m. Two different models for the beam are tested: 18 two-noded

degenerated shell elements model and 4 x 10 four-noded isoparametric solid elements

in which four elements are used across the thickness. The central deflection time

history is plotted and compared to the analytical solution in Figure (2.13).
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Node DYNAZ Ref. [13]

1 -3.62685788 x 10-3 -3.6369 X 10-3

2 -3.62685788 X 10-3 -3.6369 X 10-3

3 -3.62685788 X 10-3 -3.6369 X 10-3

4 -1.14438860 X 10-3 -1.1454 X 10-3

5 -1.14438860 X 10-3 -1.1454 X 10-3

9 -1.14438860 X 10-3 -1.1454 X 10-3

Table 2.1: The Curved Cantilever Problem: Comparison of the Results

2.2.2 Three-Dimensional Numerical Examples

Linear Analysis of a Curved Cantilever

A curved cantilever shell is subjected to vertical loads as shown in Figure (2.14).

The nodal deflections ate computed and compared to the corresponding values pre­

sented in reference [13]. As concluded from Table (2.1), the results produced by

DYNAZ agree with those presented in the aforementioned reference.

Linear and Nonlinear Deflection of a Square Plate

A square plate of width b and thickness t with clamped edges is subjected to

uniform load q that covers the entire plate. The central deflection parameter, W = *,
is plotted against the load parameter, Q = 12qbii4-v2) , in Figure (2.15) and found to

agree with the analytical solution presented in [270]. It should be pointed out that the

central deflection at the middle of the square plate was less than the corresponding

deflection in the middle of the circular or the infinitely long plate. In addition, the
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Figure 2.14: Linear Analysis of a Curved Cantilever

magnitude of the central deflection was significantly reduced when large deflection

effects were included.
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Figure 2.15: Linear and Nonlinear Deflection of an Infinitely Long Plate



Chapter 3

Contact Analysis

Mechanical contact is encountered whenever two or more bodies physically in­

teract along their boundaries. The formulation presented in this chapter deals with

the static and dynamic stress analysis of two or more bodies when they come into

contact with each other under the action of external loads. The formulation is not

restricted to the special case of an unanchored tank resting on the ground, rather it

handles the general contact problem in two and three dimensions.

In many engineering problems, externally applied forces are considered indepen­

dently from their source. This assumption simplifies the analysis significantly and,

on many occasions, does not seriously affect the accuracy of the solution. In contact

analysis, the contact forces that arise from the inequality constraints over the contact

area are unknowns. In addition, the contact area and deformation status of the bodies

in contact are also unknowns. These unknowns associated with any contact problem

render the resulting problem nonlinear. Hence, analytical solutions are obtained for

very few of relatively simple problems. As it almost invariably happens in these cases,

complicated practical problems are simulated by numerical methods. The numerical

algorithm used in this study is adapted from the work done by Chaudhary and Bathe

([17], [31]).

84
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3.1 Contact Mechanics

In this chapter, the contact problem is formulated under the assumption that

at least one of the bodies is deformable. Attention is directed towards the geometric

intricacies stemming from the interaction of the bodies, the mathematical description

of their relative motions and the complications introduced in the time history solution

of actual boundary value problems.

3.1.1 Contact Inequality Constraints

Figure (3.1) shows schematically the problem under consideration. Two generic

bodies are shown and denoted as contactor and target. The contactor contains the

finite element boundary nodes that comes into contact with the target elements. The

target and contactor could be within a single body that folds during deformation in

a fashion that invokes contact between parts of its boundaries, see Figure (3.2). The

displacement compatibility between the two bodies requires that no material overlap

can occur along the region of contact. As a result, contact forces are developed that

act along the region of contact upon the target and the contactor. The force trans­

missibility condition requires that these forces to be equal and opposite. In addition,

it requires that normal contact forces can only exert a compressive action, and the

tangential contact forces have to satisfy a law of frictional resistance. Coulomb's

law of friction is used in the current formulation to regulate the friction forces. It

requires that the friction force has to be greater than vsFn for a slippage to occur.

Once slippage has occurred, the friction force is set equal to vsFn , where V s and Vd

are the static and dynamic coefficients of friction, respectively. These two conditions
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impose inequality constraints on the system that mathematically represent the stress

analysis model of the contact bodies. These constraints are given as

No penetration condition: Pi.n 2:: 0 (3.1)

No tension condition: Fn > 0 (3.2)

Coulomb's law of friction condition: Ft ::; vsFn for no slippage (3.3)

Ft = VdFn for slippage (3.4)

where Pi is the penetration vector of contactor node number i into the target's el­

ement, n is the normal to the target element, Fn is the compressive normal contact

force and Ft is the tangential contact force. It should be noted that Equation (3.1)

ensures that the contactor nodes can not be within the region of the target body, but

the target node can be inside or outside the contactor body as shown in Figure (3.3).

This introduces some discretization error which may be reduced by using a finer mesh.

In addition, by using Coulomb's law of friction, the elasticity between the particles

in contact is neglected and a rigid plastic contact behavior is assumed.

3.1.2 Treatment of Inequality Constraints

To impose the displacement compatibility condition along the contact area,

additional Lagrange multiplier degrees of freedom, A, are introduced to the system

to minimize the potential function 'if under the contact constraints defined by the

function g(u, u) = O. By adding the contact conditions to the usual variational

indicator, the following function is obtained

II(u, u) = 'if(u, u) + A g(u, u) (3.5)
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Figure 3.1: Geometry of a General Contact Problem

Figure 3.2: Single Body Contact
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Figure 3.3: Discretization Error in the Modeling of Some Contact Problems

The second term of the equation may be physically interpreted as the potential of

the contact forces. The values of the vector A are the contact forces resulting from

imposing the contact conditions on the system.

The friction part of the force transmissibility condition is not enforced yet in

Equation (3.5). This condition is handled separately after each iteration and the

appropriate boundary conditions are set for the next iteration. This approach causes

the status of the boundary conditions applied on the system to change after each

iteration. As a result, the quadratic convergence of the Newton-Rapson method may

be seriously affected.

3.2 Finite Element Formulation

Invoking the stationary of IT in Equation (3.5) gives the following system of

incremental equations
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where K,\ is the contact matrix, F is the contact force vector that results from the

implementation of the contact forces transmissibility condition, R is the conventional

residual vector and P is the penetration vector resulting from the current material

overlap.

3.2.1 Condition of Sticking Contact

A contactor node c is assumed to be in sticking contact during iteration i under

one of two conditions:

1. The contactor node has penetrated into the target body in iteration (i - 1)

whereas it was not in contact after iteration (i - 2).

2. The friction resistance during contact is sufficient to prevent sliding.

In the first case, the penetration vector P on the right hand side of Equation (3.6)

is set such that OU for the next iteration eliminates the current penetration of the

contactor node into the target surface. Such constraints on the displacement vector

generate the contact forces. These contact forces is further checked against the law

of friction to determine whether state of sticking contact will remain or slippage will

take place.

The constraints to be enforced in the case of sticking contact are

P = 0 (3.7)
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(3.8)

(3.9)

These constraints are enforced through the matrix K>-, and the vectors F and P. The

vector F is required to recover the residual from the contact forces resulting from the

applied constraints. This residual has been previously computed from the equilibrium

of the entire system. Although the contact forces could be directly computed from

the values of A, but the equilibrium approach gives better accuracy.

Figure (3.4) shows a contactor node c that is in contact with the target element

connected to the three nodes i, j and k. A geometric analysis of the nodal coor­

dinates and deformations is performed to determine the target element associated

with each contactor node, the target's attached nodes, coordinates of point c' and the

nondimensional triangular coordinates £1, £2 and £3. If node c penetrates inside the

target element, then the penetration vector required to correct this error is given by

(3.10)

where r c' and r c are the position vector of points c' and c in the current iteration,

respectively. Sticking point c' to the target element requires that

(3.11)

Eliminating the penetration vector P gives the constraint matrix as

-1 0 0 £1 0 0 £2 0 0 £3 0 0

[KfJ = G>- 0 -1 0 0 £1 0 0 £2 0 0 £3 0 (3.12)

0 0 -1 0 0 £1 0 0 £2 0 0 £3

where G>- is a scale factor used to scale the constraint matrix and the penetration

vector to avoid ill-conditioned coefficient matrix in the left hand side. The matrix
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Figure 3.4: Geometry of Sticking Contact Condition

equation given as

u·1.

= {P} (3.13)

is then assembled to the global system to enforce the sticking contact Condition.

3.2.2 Condition of Sliding Contact

A contactor node c is assumed to be in sliding contact if the tangential force

exceeds the frictional capacity. The sliding contact condition has to be preceded by

either sticking or sliding contact condition. Thus, the penetration vector P on the

right hand side of Equation (3.6) is set to zero. The inequality constraints to be

enforced in this case are

a (3.14)

(3.15)

(3.16)
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where OUr is the incremental relative displacemnt vector, which is given by

(3.17)

These constraints are enforced through the matrix K A, and the vector F. Figure (3.5)

shows a contactor node c that is in contact with the target element connected to

the three nodes i, j and k. After the geometric analysis of the nodal coordinates

and deformations is performed and the target element, the attached nodes and the

nondimensional triangular coordinates L l , L2 and L3, are determined, the vector F

is computed from the residual vector resulting from the global equilibrium of node c.

The normal and tangential components of the contact force are then given by

Fn = F.n (3.18)

(3.19)

The tangential component is then applied in a direction opposite to the velocity

direction at node c. The constraint matrix K A is given by

[Kn = CA [ -l -m -n lL l mL l nL l lL2 mL2 nL2 lL3 mL3 nL3]

(3.20)

where l, m and n are the direction cosines of the vector normal to the target surface

that contains nodes i, j and k.

3.2.3 Condition of Tension Release

When the normal force Fn is tension, separation between the contactor node

and the target element takes place. The displacements of the contactor node and the

target element are totally independent. In this case, the Lagrange multiplier degrees

of freedom are disabled.
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3.3 Contact Algorithms

An implementation of the contact analysis using the Lagrange multiplier tech-

nique is incorporated into DYNAZ, the nonlinear multi-system-analysis finite element

code. In this section, an outline of the procedures used are presented.

3.3.1 Geometric Analysis

Geometric analysis is performed over the coordinates and displacements of the

contactor node and the target surface nodes to determine the following

1. The target element and its corner nodes i, j and k

2. The normal to the target surface that contains nodes i, j and k

3. The coordinates of the contactor node projection on the target element, point c'

4. The nondimensional triangular coordinates L 1 , L 2 and L3 that describe the

location of point c' inside the triangle of vertices i, j and k.
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In order to find the potential target element, the projection of the contactor node c on

each of the potential target elements is found. This projection is achieved in a closed

form for a linear surface and by means of an elementary Newton scheme for a quadratic

surface. In the latter case, there is an evident non-uniqueness problem due to the

lack of convexity of the target surface. It is conceivable that there are three distinct

projections to the target surface. To avoid such a problem, the closest point policy is

proposed, see Figure (3.6). The algorithm used to perform the aforementioned tasks

is summarized as follows

Loop (A) over the potential target elements

Loop (B) over the nodes on the target surface

Get the closest node and the attached elements

End loop (B)

End loop (A)

Loop (C) over the target elements attached to the closest node

Get the normal to the element

Get the contactor projection (point c')
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Get L 1 , L 2 and L 3 for point c' with respect to nodes i, j and k

If point c' is between points i, j and k then

Return

End if

End loop (C)

No target element is found

Return

3.3.2 Determination of the Contact Condition

In time history analysis, the contact condition changes as loads and ground

excitation change. Determination of the contact condition is based on the law of

friction, the previous contact condition and the current material overlap. The contact

condition decision is made as follows

If the previous iteration condition was tension release then

If there is a penetration then

The new condition is sticking contact

Else

The new condition is tension release

End if

Else

If the force Fn is tension then

The new condition is tension release

Else
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Set the new condition to be the same as the previous condition

If the previous condition was sticking contact then

If Ft > vsFn then the new condition is sliding contact

Else

If Ft < VdFn then the new condition is sticking contact

End if

End if

If it is the first iteration then

Set the new condition to be sticking contact

End if

End if

3.3.3 Overall Procedure Outline

Contact analysis is performed within each iteration until the equilibrium con­

dition is satisfied. The residual vector that results from the global equilibrium is

computed before the contact analysis starts. This vector is used to compute the con­

tact forces resulting from the contact inequality constraints applied on the system.

The constraint matrix K). is constructed and assembled to the left-hand-side coeffi­

cient matrix in each iteration. This would require the entire coefficient matrix to be

reformulated and decomposed after each iteration, which is computationally expen­

sive. Alternatively, using Crout factorization technique and isolating the Lagrange

multiplier degrees of freedom at the end of the left-hand-side coefficient matrix, makes

this action unnecessary. Only the part of the coefficient matrix corresponding to the
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Lagrange multiplier degrees of freedom is assembled and decomposed in each itera­

tion without having to reconstruct and decompose the entire coefficient matrix. This

technique saves a tremendous amount of computation.

The overall contact analysis procedure is performed, for each node on the con­

tactor surface, as follows:

1. Read the contact forces from the residual vector

2. For the current contactor node c, perform the geometric analysis

3. Make the contact decision to determine the contact condition and compute the

constraint matrix K>.

4. Compute the contact force vector F

5. Transfer the contact forces to the target nodes as follows

F i = L1F

F j = L2F

Fk = L 3F

(3.21)

(3.22)

(3.23)

6. Assemble the constraint matrix and force vectors to the global left-hand-side

coefficient matrix and the right-hand-side load vector, respectively.

3.4 Computer Implementation and Testing

The algorithm for solution of contact problems presented in this chapter has

been incorporated into DYNAZ. The solution method is applicable to wide range of
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static and dynamic problems with material and geometric nonlinearities. Although

the Lagrange multiplier values are the incremental contact forces based on the solution

of the governing equations of equilibrium, they are not used by the algorithm because

such a procedure may introduce serious errors of linearization in nonlinear analyses

with contact. Instead, the total contact forces are directly evaluated from equilibrium

of the applied external loads, inertia forces, damping forces and the nodal point forces

equivalent to the current element stresses. Thus, the sole function of the Lagrange

multipliers is to enforce that, in each iteration, the incremental displacements of

contactor and target surfaces are compatible with each other in the region of contact.

Integral statements generally form the basis of the finite element approximations

to problems in elastodynamics. The simplest, and, hence, most popular approach is

to perform separate approximations for the two distinct types of independent vari­

ables, associated with the temporal and the spatial dimensions. Typically, domain

approximation precedes time integration, so that the latter is applied to a set of or­

dinary differential equations in time. This decomposition leads to what are known

as semi-discrete, or direct, time integration methods. A broader class of integration

methods resulting in space-time finite element emanate from a priori coupling of tem­

poral and spatial variables in the discretization. In this work, the Newmark family

direct time integration technique is used. It should be pointed out, as was also ob­

served in other references ([31], [215]), that the integration of the dynamic response

gives better accuracy if performed by using the time integration parameters, (3 = 0.5

and 'Y = 0.25, which corresponds to the well-known trapezoidal rule. It is reported

that these values of the time integration parameters give a dynamic contact solution

that fulfill the total energy conservation and the impulse-momentum relationship.
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3.4.1 Two-Dimensional Numerical Examples

Beam on Rigid Foundation

A long simply supported rectangular beam is bent by two equal end-point mo-

ments, M As the beam deflects, it approaches, and eventually reaches, a flat rigid

surface, see Figure (3.7). The material behavior of the beam is described by linear

elastics model of E = 3.0 X 103 and v = 0.3. Solution to this problem may be obtained

by means of various linear beam theories. Also, a similar problem has been presented

in [215].

The beam was uniformly discretized into 100 degenerated plane stress shell

elements and symmetry was observed. A reduced selective integration technique was

used to avoid shear locking phenomenon. The finite element solution qualitatively

conforms with the other results, as it predicts release from the rigid surface in the

middle of the beam with the increase of the applied moments. Figure (3.8) shows

the deformation for different values of the applied moment M. The corresponding

contact pressure between the beam and the foundation is shown in Figure (3.9). The

change of beam length in contact with the foundation is shown in Figure (3.10). The

support vertical reaction that represent the integration of the contact pressure over
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the area is show in Figure (3.11). All results are presented only for the right half of

the beam.

Contact of two flexible trusses

Figure (3.12) shows two flexible trusses A and B. Truss A is moving towards

truss B which is fixed. The horizontal and vertical displacement are prescribed for

nodes 1 and 3 in truss A. The dynamic and static coefficients of friction are assumed

to be 0.5 between the two trusses. Analytical solution for the problem can be readily

found. The results precisely agrees with the analytical solution. Figures (3.13) and

(3.14) show the displacements of nodes 1, 2 and 6. Figure (3.15) shows the contact

forces at node 2.
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3.4.2 Three-Dimensional Numerical Examples

Nonlinear Uplift Behavior of a Circular Plate

A nonlinear behavior has been demonstrated by unanchored liquid storage tanks

during earthquakes. Amongst the factors which contribute to such a complex behav-

ior, there are two characteristics associated with base plate uplifting that add to the

intricacy of the problem. The first complexity arises because the contact area of base

plate with its supporting foundation is continually changing as uplift forces change.

Secondly, the transverse deflection of the plate may become large in comparison with

the base plate thickness, thereby inducing membrane forces that could not be ig-

nored in the analysis. In this example, a thin circular plate of 1.25 em thickness and

6 m radius was subjected to a downward hydrostatic pressure of 49.1 KN/m2 and an

uplifting force acting along the periphery of the outer circle which is given by

1 + cos e
Pu = Pu 2 (3.24)

where Pu is the amplitude of the uplift force, and e is an angle measured from the

direction of the earthquake excitation. The plate has been discretized as shown in
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Figure (3.16). The membrane degrees of freedom along the periphery of the outer

circle of the plate and the boundaries of the contact area were assumed fixed. Three

cases of the rotation degrees of freedom along the periphery of the outer circle of the

plate are presented in Figure (3.17): free, fully restrained and partially restrained.

Results conform with those presented in [13].

Longitudinal Impact of a Bar on a Rigid Wall

A slender elastic bar moving with a uniform velocity V is considered to impact

a rigid half space, see Figure (3.18). The analysis is performed to calculate the

generated impact stresses in the bar material.

The bar is chosen to be the contactor body and it is discretized using twenty

eight-node 3 D solid elements. The contactor surface consists of one four node seg-

ment. The rigid half space is the target body and the target surface is defined by

four nodes each having no degrees of freedom. The average impact stress at the bar

tip is found to be 1.0 which agrees with both the analytical and numerical solution

presented in [31].
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Chapter 4

Liquid Domain Formulation

The dynamic response of liquids has significant influence on the response of

their containers. Inappropriate approximation of the liquid motion may lead to major

errors in estimating the seismic response of the containers. The liquid pressures and

the impact forces form the measurable level of the energy transferred to the tank shell.

In addition, the motion of the tank wall is the primary source for the liquid energy.

Since this energy transfer occurs simultaneously throughout the liquid boundary, it is

essential in the finite element analysis of such problems to use a model that effectively

deals with the coupling between the liquid and the tank wall.

The equations of motion of a liquid may be formulated by two different ap­

proaches, corresponding to the two ways in which the problem of determining the

motion of a liquid mass, acted on by given forces and subjected to given boundary

conditions, may be viewed. The Eulerian formulation is obtained by considering the

object of our investigations to be the knowledge of the velocity, pressure and density

at all points of space occupied by the liquid for all instances. On the other hand,

the Lagrangian form is obtained by considering the object to be the determination

of the history of each particle. Detailed discussions of the two forms may be found

in [146]. In the current investigation, a Lagrangian description of the structure's

107
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motion is utilized, which makes it necessary to use a Lagrangian description of the

liquid-structure interface in order to enforce compatibility between the structure and

liquid elements. The continuity equation in the Eulerian form is utilized inside the

liquid domain to mathematically describe the liquid motion inside the tank.

The liquid in this analysis is considered to be inviscid, irrotational and incom­

pressible. Such simplifying assumptions allow displacements, pressures or velocity

potentials to be the variables in the liquid domain. The displacement-based liquid

elements may be easy to incorporate in finite element programs for structural analysis

and simplify the enforcement of the liquid-structure interface constraints. However,

such elements require two or three degrees of freedom per node. In addition, this

approach is not well suited for problems with large liquid displacements and requires

special care to prevent zero-energy rotational modes from arising. Alternatively, using

pressures or velocity potentials as the unknown degrees of freedom requires only one

degree of freedom per node inside the liquid domain, which significantly reduces the

computational cost of the analysis, and adequately represent the physical behavior of

the liquid. The latter approach is used in this investigation.

4.1 Variational Principles of the Liquid-Structure

Interaction Problem

In general, liquid-structure interaction may be divided into five categories. Each

category requires specific formulation and unknowns that may not be suitable for

others. As shown in Figure (4.1), category five is characterized by the free surface
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Figure 4.1: Categories of the Liquid-Structure Interaction Problems

existence, which combines the sloshing phenomenon with the liquid-structure inter-

action. The free surface may also be viewed as a structure boundary for the liquid,

but with zero stiffness. Since this structure boundary can not take any force, the liq-

uid pressure has to be eliminated on this boundary in order to fulfill the equilibrium

conditions.

The virtual work statement that is used to describe the nonlinear liquid sloshing

m either anchored or unanchored tanks (category 5) is developed in this section.

Figure (4.2) shows the general geometry of a liquid sloshing in an unanchored tank.

It should be pointed out that unanchored tanks are characterized by the successive

contact and separation between the tank base plate and its foundation. The nonlinear
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boundary conditions that result from this behavior are enforced separately by means

of the contact analysis presented before. Thus, the formulation presented in this

section is independent of the tank support condition. This property of the current

formulation allows it to be used in the analysis of various liquid storage tanks with

different support conditions, such as anchored, unanchored and elevated tanks. Also,

the formulation is not restricted to containers with vertical walls but rather allows

the modeling of tanks of any shape.
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Following Hamilton's principle, the energy function for the structural domain

may be written as

(4.1)

where E is the stress-strain matrix, E is the strain vector, u is the displacement vector,

ns is the structural domain, r w is the wet surface of the structure, f1 is the liquid

pressure vector, fE is the body force vector and Ps is the mass density of the structure.

Setting variations on ITs to zero gives the principle of virtual displacements

(4.2)

4.1.2 Liquid Domain

Following the work done by Kock and Olson [141], the variational indicator of

an incompressible liquid flowing under gravity field is obtained by subtracting the

kinetic energy from the potential energy of an infinitesimal element of volume dnf,

then integrating over the liquid domain nI , which yields

(4.3)

where PI is the mass density of the liquid, y is the Cartesian coordinate measured in

a direction opposite to that of the gravitational acceleration g, and V is the velocity

vector. The continuity condition and the kinematic condition are still need to be
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enforced on the liquid domain. The kinematic condition insures that the normal

liquid velocity at the liquid boundary matches the rate of normal displacement of the

boundary. Using Lagrange multipliers, the two conditions are added to the variational

indicator as follows

II f = 1:2 [if {Pf9y -1PfV,V - AIP{\lV} dDf + if A2 {Vn - Un} drf ] dt (4.4)

where Ai refers to the i th Lagrange Multiplier, Un is the time derivative of the normal

displacement of the boundary and V n is the normal velocity at the liquid boundary.

Taking variations with respect to V gives the following Euler-Lagrange equations

8V: -pfV + P{\lAl = 0 in Df (4.5)

8vn : A2 - PfAl = 0 on rf (4.6)

Thus,

V V Al (4.7)

A2 Pf Al (4.8)

It is evident from Equation (4.7) that physically Al is the scalar velocity potential.

Therefore, Equation (4.4) may be rewritten as

IIf = {t
2

P.r [{ {gy - ~ \72 ¢ - ¢ \72 ¢} dDf + { ¢ {a¢ - iJ,n} dr.r] dt (4.9)Jtl JOf 2 Jrf an
After integrating by parts, Equation (4.9) may be rewritten as

II f = 1:2

P.t [if {gy +1\72 ¢ + ¢} dD.r] dt

or concisely,

IIf = {t
2

[{ PdD.r] dt
Jtl Jnf

where P is the total pressure which may be also written as

[
1 a¢ V¢· V¢ ]

P = Po - I'f -- + + y
. 9 at 2g

where Po is the hydrostatic pressure at the point.

(4.11)

(4.12)
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4.1.3 Coupled Liquid-Structure System

In order to apply the variational principle to the liquid-structure interaction

problem, the liquid and the structure functionals, given by Equations (4.1) and (4.10),

are combined together. The two statements are coupled at the liquid-structure inter-

faces by

a¢
an
Pn

(4.13)

(4.14)

where n = (n x , ny, n z ) is the outward normal unit vector from the liquid towards the

structure.

4.2 Finite Element Discretization

The development of the liquid element that is capable of modeling the liquid

behavior in flexible liquid storage tanks is achieved throughout several stages. First,

the classical isoparametric liquid element, which is also used to model the liquid

motion inside the liquid domain, is developed. Then, the element is enhanced with

the nonlinear sloshing and liquid-structure interaction in order to model the liquid

boundaries.

4.2.1 Isoparametric Liquid Element Formulation

The strong form of the steady state velocity potential flow of incompressible

liquid may be stated as follows:
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Given vn(x) : rf --+ R find ¢(x) : Or --+ R such that

Continuity Condition:

Kinematic Condition:

Pf \72 ¢(x) = 0, v x E Or

v x E rf

(4.15)

(4.16)

where V n is the prescribed normal velocity across the liquid boundaries. This strong

form yields the following variational equation

Pfh \7(8¢)\7¢dOf=Pfh8¢vndr.r
f f

(4.17)

Following the classical isoparametric finite element discretization, the following rela-

tions are obtained;

F int

F ext

[Br]

Pf h
f
BJBr dOf

Pf hBJVf dOf
f

PI r NVn dr rJrf .

N1N1 N 1N 2

Pf r N2Nl N 2N 2Jrf

MjVn

aNI aN2
ax ax

aNI aN2
ay ay

(4.18)

(4.19)

(4.20)

(4.21)

(4.22)

(4.23)

{Vr} = V¢ = BreI> (4.24)

where Kf is the liquid stiffness matrix, F int and F ext are the liquid internal and exter-

nal flow vectors, respectively, Vf is the liquid velocity vector, eI> is the nodal velocity

potential vector, j is the liquid element edge number that is subjected to a normal

discharge of speed V n , Mj is the liquid element mass matrix for edge number j and N i
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is the ith isoparametric shape function. Physically, F ext is the nodal discharge vector

entering or leaving the element domain as a result of the normal velocity of the liquid

across the liquid domain boundaries. This natural boundary condition ensures the

normal velocity compatibility at the liquid boundaries (kinematic condition). The

tangential velocity does not contribute to the discharge vector and consequently will

have no effect on the continuity equation. Fint is the internal discharge vector result­

ing from the current gradient of the velocity potential function, ¢. The continuity

equation is satisfied when F int and F ext are in equilibrium. The residual discharge is

then given by

Rf = F ext - F int (4.25)

This residual is mainly caused by the free surface motion and the consequent remesh­

ing of the liquid domain. This yields to an iterative modified Newton-Rapson scheme

in the form

(4.26)

The vector 8<I>i is then used to correct the velocity potential vector after the ith

iteration.

4.2.2 Nonlinear Liquid Sloshing in Rigid Tanks

liquid sloshing is defined to be the free surface gravity waves caused by an

excitation to a liquid domain. Figure (4.3) shows the geometry of the problem of

liquid sloshing in a rigid tank. In the special case of rigid tank, the translational

motion of the liquid boundaries are directly proportional to the ground excitation.

The normal velocity of the boundaries is then given by
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(4.27)

(4.28)

where n is the normal to the liquid boundary, (r x, r y, r z) is the position vector of a

generic point on the liquid boundary, G is the ground translation velocity vector and

(B x , By, Bz ) is the ground rotational velocity vector. In plane problems, Equation (4.27)

is reduced to

(4.29)
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The strong form of the boundary value problem that represent the nonlinear

liquid sloshing in a rigid tank is stated as follows:

Given vn(x, t) : r w x [0, T] ----+ R, the initial free surface r so , and the initial conditions

of the potential function ¢o(x) : nf ----+ R, find ¢(x, t) : Of x [0, T] ----+ Rand r s x

[0, T] ----+ R such that

Continuity Condition: v 2¢(x, t) = 0, \::j x E nf (4.30)

Initial Conditions: ¢(x,O) = ¢o(x), \::j x E Of (4.31)

rs(O) = r so (4.32)

Kinematic Condition: 8¢ _ \::j x E r w (4.33)8n - V n ,

2

Dynamic Condition: 8¢ \l ¢ \::j x E r s (4.34)8t = --2- - gh,

Kinematic Condition: 8¢ _ 8h 8¢ 8h 8¢ 8h \::j x E r s (4.35)8y - 8t + 8x 8x + 8z 8z'

where r s is the free surface boundary, r w is liquid boundary in contact with the tank

wall or base plate and h is the free surface elevation. Equation (4.34) represents the

dynamic condition that comes from prescribing the pressure value at the free surface

in Bernulli's equation, while Equation (4.35) represents the kinematic condition that

enforces the vertical velocity compatibility between the free surface and the liquid

domain.

As a result of the simplified assumptions, lack of viscosity sometimes causes un-

desirable contribution from the high frequency components in the numerical solution

of the problem. This contribution is undesirable because of the high frequency modes

in the solution that are poorly represented in the discritized system. Any wave that

has a length shorter than the element width is not represented adequately due to

the limited order of the shape functions. As a result, dispersion error may develop

in the solution of some problems. This occurs, sometimes, when the liquid is in the
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resonance zone or when the excitation level is relatively high. Numerical dissipation

may be used then to damp out the high frequency wave components propagating

near the free surface. A numerical dissipation term was suggested by Chen [32] for

the two-dimensional solution of the problem. He reported that this term has a little

effect on the low frequency modes that govern the solution. After incorporating the

numerical dissipation, Equation (4.35) may be rewritten in the two-dimensional case

as

a¢ a2h ah a¢ ah
-+vx-=-+-­ay ax2 at ax ax (4.36)

where V x is the damping parameters given as function of the mesh density, lx, and

the wave convection speed relative to the mesh V r as

(4.37)

where lx is taken as the width of the liquid element below the free surface in the x

direction and f..t is a parameter varies between a and 1 to tune the damping globally.

In addition, the simplified assumptions, sometimes, causes physical instability of the

numerical solution used when the free surface slope is very steep, 70° to 80°. This

is attributed to the wave breaking phenomenon which is not incorporated into the

current model. This is very likely to occur when the liquid is in the resonance zone,

e.g. Figure (4.23), or when the excitation level is relatively high, e.g. Figure (4.24).

In case of large amplitude surface waves, it is desirable to update the mesh to

follow the liquid boundaries and to avoid distorted elements. In such a case, the

time derivatives of any spatial function should be modified to account for mesh speed

according to the following relation

(4.38)
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where V m is the mesh speed and F is the function defined with respect to the fixed

coordinate system while f is the function defined with respect to the moving mesh.

Discrete Finite Element Implementation

Discrete finite element implementation is achieved by enhancing the isoparamet-

ric element developed in Section 4.2.1 to model large amplitude free surface liquid

sloshing in rigid tank. This is performed by enforcing the nonlinear dynamic and

kinematic conditions given by Equations (4.34) and (4.35) directly on each of the free

surface nodes iteratively, as follows

(4.39)

(4.40)

where Ai is the liquid free surface node tributary area projected in the horizontal

plane, h is the free surface elevation, and (Rd)i and (Rk)i are the residuals corre-

sponding to the dynamic and the kinematic equations at the node after iteration i,

respectively. Physically, Rd represent the pressure force applied at the free surface

node due to violation of the dynamic condition, while Rk is the discharge vector at the

free surface node resulting from violating the kinematic condition. At equilibrium,

the global residual vector of the entire system should be zero, which means that both

the dynamic and kinematic conditions are satisfied at the free surface nodes. Taking

the first variation of Rk and Rd gives, after linearization, the following modified

Newton-Rapson Iterative scheme at each free surface node

(4.41)
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It should be pointed out that the variation of the liquid velocity and free surface

slopes are ignored in Equation (4.41). This linearized version of the iterative scheme

yields a symmetric coefficient matrix on the left hand side, however, it requires few

more iterations to satisfy equilibrium. Although nonlinear schemes may be faster to

converge, but they produce a nonsymmetric coefficient matrix on the left hand side,

which requires almost double of the symmetric storage and computational cost.

Continuous Finite Element Implementation

Continuous finite element implementation is achieved by working directly from

the variational indicator. In order to derive the virtual work statements to be dis-

cretized, the variations of Equation (4.10) with respect to ¢ and Un are taken, thus

8¢ : (4.42)

(4.43)

Equation (4.42) may be rewritten as

(4.44)

Since the virtual variables are arbitrary, the Euler equations that govern the liquid

behavior are

Continuity Condition:

Kinematic Condition:

Dynamic Condition:

y2¢ = 0 on Df

. a¢
Un = - on ffan
P = 0 on f s

(4.45)

(4.46)

(4.47)

Equation (4.46) represents the kinematic condition at the liquid-structure interface

f wand at the free surface r s' On the other hand, Equation (4.47) represents the
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dynamic condition only at the free surface r s because Un is considered as unknown

only at the free surface.

Linearization of Equations (4.42) and (4.43) is achieved by assuming that the

free surface elevation h is equal to the normal displacement of the free surface Un and

ignoring the term \J2¢ in Equation (4.12), this yields to

(4.48)

(4.49)

(4.50)

where j is the free surface edge number, V f is the liquid velocity vector and V n is the

normal velocity vector at free surface nodes. The normal velocity at a free surface

node i is computed as

h (4.51 )

where lli is the normal vector to the free surface at the node, and Vx and Vz are

the velocity of free surface node i in the x and z directions due to the mesh speed,

respectively.

4.2.3 Nonlinear Liquid Sloshing in Flexible Tanks

The modified Newton-Rapson method is used to solve the nonlinear system of

equations. The left hand side of the system represent the tangent coefficient matrix,
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while the right hand side represent the residual vector. Most elements have contribu-

tion to both sides. In this section, the contribution of the liquid-structure interaction

element to both sides is presented.

On the Right Hand Side

As shown in Figure (4.4), a tank node in contact with the liquid domain is sub-

jected to the liquid pressure and, at the same time, delivers energy to the liquid. Since

the liquid mesh is updated after each iteration to comply with the new free surface

shape and deformed boundaries of the structure, the liquid nodes are moving with

respect to the structure nodes. A geometric analysis, similar to what need to be per-

formed in contact analysis, is applied on liquid and structure nodal coordinates and

displacements to determine which liquid element is in contact with the current struc-

ture node. The normal velocity compatibility condition at liquid-structure interfaces

gives

. a¢
u n =-an (4.52)

This condition causes an external discharge vector to be applied on the liquid element

due to the normal velocity of the structure boundary. Hence,

(4.53)

where rL is the liquid element surface in contact with the tank wall and N is the

shape function vector for the element nodes located on that surface. The dynamic

condition at liquid-structure interfaces requires that the liquid pressure be integrated

and applied on the structure node, which gives

(4.54)
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Figure 4.4: Boundary Conditions at a Structure Node in Contact with a Liquid
Element

where Ta is the tributary area served by the structure node and P is the total pressure

at the structure node given by Equation (4.12).

On the Left Hand Side

Invoking the variation of Equation (4.53) gives

8F ext = Pf r N drL n T 8il. JrL

while invoking the variation of equation (4.54) provides

Ta n 8P

( [
1 a¢ v¢· v¢ ])T a n 8 Po - If -- + + y

. 9 at 29

which after linearization gives

I . T .
8F = Ta PI n 8<1> = T a PI n N 8<1>

(4.55)

(4.56)

(4.57)

(4.58)

Equation (4.55) simulates the effect of small change in the structure degrees of freedom

on the liquid discharge vector, while Equation (4.58) simulates the effect of small
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change in the liquid degrees of freedom on the pressure force vector applied on the

structure. Therefore, the liquid-structure coupling matrix is given as

(4.59)

while the structure-liquid coupling matrix is given as

(4.60)

In order to achieve symmetric equations, the liquid-structure coupling matrix should

be equal to the transpose of the structure-liquid coupling matrix. For this to be so,

to satisfy this condition, one states

TN = lr N drf
a f Wr w

(4.61)

which could be easily maintained by choosing the finite element mesh of both the

liquid and the structure domains on the interface to posses the following properties

1. The tributary area served by the structure node coincide with the liquid element

edge in contact with the structure, i.e. Ta = rL

2. The structure node location is chosen such that the shape function vector of

the fluid element at the structure node equals to the vector that consists of the

ratios of the surface area served by each fluid node to the total surface area in

contact with the structure, i.e. the following relation is satisfied

1 .
Ta N At the structure node location = pM

J
f I

f
(4.62)

where j is the liquid element edge in contact with the structure node and I is a

unit column. For example, in case of linear shape functions, the structure node

should be in the middle of the liquid element face, as shown in Figure (4.4).
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In case of large amplitude free surface waves, the mesh is updated to follow

the liquid boundaries. This makes it impossible to maintain the symmetry condi­

tions. One or more structure nodes may be located along the same liquid element

edge and in positions that violate the symmetry conditions. In this case, the closest

structure node to the symmetric position is chosen and Cfs is used to couple the

liquid element with this structure node only. This technique is found to produce

good quadratic convergence. Although using nonsymmetric matrices may be faster

to converge, it requires almost double of the symmetric storage and computational

cost. The developed approach is found to be convenient and efficient.

The global right hand side is then given as

M s 0 0 oil Cs C}s 0 oti K s 0 0 ou
0 0 0 0<1> + Cfs 0 C¢h 0<1> + 0 Kf 0 0<1>

0 0 0 oh 0 C~h 0 oh 0 0 K h oh
(4.63)

where C¢h and K h are the matrices resulting from the assembly of either Equation (4.41)

or Equation (4.48), and h is the free surface elevation degrees of freedom vector.

It should be pointed out that the developed liquid-structure interaction imple­

mentation could be also used to handle the nonlinear sloshing problem. The liquid

free surface could be treated as a liquid-structure boundary on which the structure

has zero stiffness. In order to fulfill the equilibrium condition, the liquid pressure has

to be eliminated on this boundary.
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4.3 Computer Implementation and Testing

The formulation of the nonlinear sloshing problem and the liquid-structure in­

teraction are incorporate into DYNAZ, the nonlinear multi-system-analysis finite el­

ement code. The developed liquid element uses selective uniform integration tech­

niques. It also allows the use of variable nodes to accommodate wide variety of prob­

lems and to allow for appropriate mesh refinements. Several cases are then tested

and compared with previous investigations.

4.3.1 Two-Dimensional Examples

Example 1: Linear Response to Sinusoidal Ground Excitation

A rectangular tank of 10 m. width and 10 m. liquid height was tested for small

ground excitation. The excitation has 0.16 second period and given by

Gx 0.01 sin t m/sec

Two finite element meshes are used: one consists of 10 x 10 liquid elements while

the other consists of 20 x 20 elements. Figure (4.5) shows a comparison of the liquid

response to the ground excitation with the analytical solution using the linear wave

theory presented in [32]. Figure (4.6) shows the effect of the mesh density on the

linear liquid response.
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Figure 4.5: Example 1: Comparison with the Analytical Solution of the Linear Wave
Theory.
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Example 2: Nonlinear Response to Sinusoidal Ground Excitation

The same rectangular tank used in the prevIOUS test is subjected to strong

ground excitations. The excitation has 0.16 second period and given by

Gx = 1.0 sin t m/sec

A finite element mesh that consists of 10 x 10 liquid elements is used. Figures (4.7)

and (4.8) shows a comparison of the liquid response to the strong ground motion

with that obtained from Ref. [32]. Figure (4.9) shows the liquid mesh during the

time history analysis.

Example 3: Effect of Tank Width on the Response to Sinusoidal Ground

Excitations

In order to study the effect of tank width on the nonlinear liquid response to

a sinusoidal ground excitation, a group of four tanks, as shown in Table (4.1), that



129

2.0 .------------------,
...... DYNAZ - Given Ref.

....
...c:
bl)

'i) 1.0
::r::
~ 0.5
s
~
~ Ot--JH-+-;r-+-H+ft--+-+-~K_f__!¥_+-iH.....,..._+_+_l

c...
8 -0.5
....
f.o -1.0
C2

:g
1.5

504020 30
Time (Sec)

10
-1.5 +---+--+---+-----If----+---1--<---+--+---..4

o

Figure 4.8: Example 2, Comparison of Wave Height Response at the Right Corner.

have the same H / R ratio, but vary in width, are subjected to two groups of sinusoidal

ground excitations; the first group of excitation is given by

while the second group of excitation is given by

where WI is the first sloshing mode frequency of the liquid free surface. It is found that

the normalized time history responses of the four tanks are very close. This means

2R = H ft. WI rad/sec. TI sec.

5 4.49 1.40

10 3.17 1.98

15 2.59 2.42

20 2.25 2.78

Table 4.1: Example 3, Fundamental Frequencies the Four Tanks



12

10
---:-
E 8
'-"
C/)
Q)

6+-0

ctl
c
:0 4'-
0
0
()

2>-

...--'-.-----
"'----',---'l---"---
---'~ .---
-,O----,~...-----....---'

--' ,.......--"

.......

130

o
o 2 4 6

X-Coordinates (m.)
8 10

Figure 4.9: Example 2, Liquid Mesh at Time t = 3.6 Sec.

that the rigid tank width has no effect on the normalized response time history of the

liquid. The same finite element mesh which consists of 20 x 20 elements is used in

all cases. Figures (4.10) and (4.11) show the results for the first group of excitation

while Figures (4.12) and (4.13) show the results for the second group of excitations.

Example 4: Nonlinear Response to Mexico City Earthquake

A rectangular tank of 30 ft. width and 15 ft. liquid height is subjected to the

North West component of the Mexico City earthquake, shown in Fig (4.22) in the

period domain. This particular liquid height to base ratio H /2R = 0.5 was reported

as the ratio that is most affected by the nonlinear sloshing effect. The peak ground

acceleration of this component of Mexico City earthquake is 0.168g. The liquid has

a specific gravity of 62.4 lb/ft3 . In order to filter high frequency surface wave com-

ponents that propagate along the free surface, a dissipation factor of 0.75 is used. A
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finite element mesh that consists of 20 x 20 4-noded isoparametric liquid elements

with a total of 441 nodes is used. Results are obtained and compared to those ob-

tained from Ref. [32]. Figures (4.14) and (4.15) show wave height time history along

the tank left and right wall, respectively. Figures (4.16) (4.17) show the free sur­

face profile at two different time instants. Figures (4.18) and (4.19) show the base

shear and overturning moments applied on the tank walls and base plate due to the

hydrodynamic pressure, respectively.

Example 5: Nonlinear Response to EI Centro Earthquake

A rectangular tank of 30 ft. width and 15 ft. liquid height is subjected to the

East West component of the El Centro earthquake record measured at the Imperial

Valley site. The peak ground acceleration of this record is 0.21g. In order to filter

high frequency surface wave components that propagate along the free surface, a

dissipation factor of 0.025 is used. A finite element mesh that consists of 10 x 10

9-noded isoparametric liquid elements with a total of 441 nodes is used. Results are
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obtained and compared to those obtained from Ref. [32]. In order to show the free

vibration response of the free surface, the time histories were obtained till time t = 80

sec. although the earthquake duration was 53.48 sec. Figures (4.20) and (4.21) show

wave height time history along the tank left and right wall, respectively.

Example 6: Free Surface Wave Breaking Due to Resonance

A rectangular tank of 12 ft. width and 12 ft. liquid height is subjected to the

North West component of the Mexico City earthquake. The earthquake, shown in

Fig (4.22) in the period domain, is found to posses strong components of period range

between 1.9 and 3.0 seconds with its maximum at period 2.05 second. Using the linear

analytical solution presented in [32], the liquid fundamental period is computed as

follows

.!!- = 0.262
2R
~-----

JCiI9 tanh(a1H) = 2.898 rad/sec

2.168 sec.
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Since the free surface sloshing fundamental period is within the range of the strong

components of the ground excitation, the free surface wave is expected to break. As

expected, it is observed that the free surface wave breaks at time 61.8 seconds, as

shown in Fig (4.23).

Example 7: Free Surface Wave Breaking Due to High Level of Excitation

A rectangular tank of 10 ft. width, 10 ft. liquid height and 2 inches wall thickness

is subjected to a sinusoidal ground excitation given by

ex = LOg cos(3.8lt)

Since the level of excitation is relatively high, the liquid is expected to respond vio-

lently to the strong high frequency vibrations delivered to the liquid throughout the

tank walls. As expected, the free surface wave breaks at time 4.0 seconds, as shown

in Fig (4.24).
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4.3.2 Three-Dimensional Examples

Example 8: Linear Response of an Anchored Liquid Storage Tank

The linear response of a cylindrical liquid storage tank to the Channel 3:360 cor-

rected record of the Northridge earthquake measured at Arleta cite which has a peak

ground acceleration of 0.344g, was found. The finite element mesh is used is shown

in Figure (4.25). The tank has 37 ft. diameter, 32 ft. height, 28.3 ft. liquid height,

3/8 in. wall thickness, and 1/2 in. base plate and roof thickness. Results were com­

pared to those obtained from the analysis presented in reference [103]. Figure (4.26)

shows the time history response of the horizontal acceleration of the tank shell top

node. Figure (4.27) shows shell base axial stress time history. Figure (4.28) shows

shell hoop stress time history at 25% of the shell height measured from the bottom

of the tank. Figures (4.29) and (4.30) show the tank base shear and base overturning

moment time histories due to pressure on tank wall, respectively.
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Figure 4.26: Example 8: Shell Top Horizontal Acceleration
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Figure 4.28: Example 8: Shell Hoop Stress at 25% of the Tank Height
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Chapter 5

Nonlinear Earthquake Response

of Liquid Storage Tanks

The nonlinear finite element code DYNAZ was utilized to estimate the earth­

quake response of two liquid storage tanks of different aspect ratios: a broad tank

and a tall tank. The broad tank is 40 ft high and has a radius of 60 ft. The shell

thickness is assumed constant of 1 inch and the base plate is considered having 1 inch

of uniform thickness. The tall tank is 72 ft of high, 24 ft in radius, and has both shell

and base thickness of 1 inch. Both tanks are assumed full of water to capacity. Each

of the two tanks were subjected to two different earthquake motions: the East-West

component of the 1940 El Centro earthquake which has a peak ground acceleration

of 0.214g, as shown in Figure (5.1), and the record from the Northridge earthquake

measured at the Arleta site which has a peak ground acceleration of 0.344g, as shown

in Figure (5.2), and measured in a direction of 90° from the hypocenter direction. The

responses of the two tanks were estimated assuming different boundary conditions:

rigid tank walls, flexible tank walls completely anchored and flexible unanchored tank

walls.

144
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5.1 Response of Tanks with Rigid Walls

Liquid motion in rigid containers reflects primarily the effect of sloshing on the

response of these tanks. As a simplification for the analysis of circular cylindrical

tanks, one may consider a rectangular strip in the middle of the tank and analyze it

as a two-dimensional problem. Alternatively, the full three-dimensional model may

be used. The linear fundamental period of the two-dimensional model is given by

(5.1)

whereas for the three-dimensional model, it is given by

(5.2)

where H is the liquid depth. Although the linear fundamental periods of both the

two and the three-dimensional models are close, as shown in Table (5.1), the cor-

responding wave heights may differ significantly. It is unconservative to use the

two-dimensional model for predicting the response of cylindrical liquid storage tanks.

This is attributed to the difference in the mode shapes of both models. The maxi-

mum response calculated based on two and three-dimensional models are presented

and compared in Tables (5.2) and (5.3). Note that W denotes the total weight of the

contained liquid and R is the tank radius. Results show that using the linear sloshing

assumptions at the free surface underestimates its wave height. However, it predicts

well the base shear exerted on the tank. Using the nonlinear sloshing assumptions

shows that the positive sloshing amplitude is larger than the negative amplitude.

Figures (5.3) and (5.4) show the free surface wave heights of the two extreme

opposite points on the principal diameter which parallels the earthquake excitation of
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Model Type

Tank Type 2-D Model 3-D Model

Broad Tank 7.74 sec 6.89 sec

Tall Tank 4.33 sec 4.00 sec

Table 5.1: Periods of Different Models for Liquid Sloshing in Rigid Tanks

the broad and tall tanks, respectively. Figures (5.5) and (5.6) present the deformed

finite element mesh for both broad and tall tanks, respectively. Several ways to

discretize the liquid domain were attempted to obtain the earthquake response of the

liquid. It was found that the performance of an orthogonal finite element mesh yields

better results and smoother free surface profile. This is attributed to the fact that the

orthogonal mesh provides orthogonal mapping between the Cartesian and curvilinear

coordinates, which is compatible with the stream and equipotential lines resulting

from the solution of Laplace equation. Using other forms of finite element mesh in

the nonlinear sloshing problem may result in a broken free surface profile and, as a

result, the analysis may fail to converge.
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Figure 5.5: Deformed Liquid Domain of the Broad Tank at t = 43.5 Sec, Northridge
Record

Figure 5.6: Deformed Liquid Domain of the Tall Tank at t = 32.5 Sec, El Centro
Record
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Wave Height (ft)

Case Left End Right End OTM/WR Base Shear/W

Broad Tank- 2-D 2.27 2.27 0.053 0.064

Linear Sloshing 3-D 5.19 5.19 0.066 0.096

Broad Tank- 2-D 2.18 2.35 0.052 0.062

Nonlinear Sloshing 3-D 4.77 3.61 0.067 0.103

Tall Tank- 2-D 3.84 3.84 0.197 0.141

Linear Sloshing 3-D 2.23 2.23 0.216 0.155

Tall Tank- 2-D 4.24 3.56 0.196 0.143

Nonlinear Sloshing 3-D 2.32 2.36 0.216 0.155

Table 5.2: Liquid Sloshing in Rigid Containers Under El Centro Record

5.2 Anchored Tank Response

In order to evaluate the effect of flexibility of the tank wall on the response

of liquid storage tanks, both the tank and the liquid were modeled using the finite

element method. Figures (5.7) and (5.8) show the finite element mesh used for the

broad and tall tanks, respectively. The tank base was assumed to be fixed to a rigid

foundation, and consequently, the nodes of the bottom of the tank were assumed to

have a specified acceleration equal to the ground acceleration. A Raleigh damping

coefficient which provides 3% damping to the first mode and increasing values for the

higher modes was chosen for the flexible-impulsive component. Using the added mass

matrix approach presented in [103], the fundamental period of this component was

found to be 0.162 sec for the broad tank and 0.189 sec for the tall tank.
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Wave Height (ft)

Case Left End Right End OTM/WR Base Shear/W

Broad Tank- 2-D 1.62 1.62 0.094 0.113

Linear Sloshing 3-D 1.52 1.52 0.086 0.125

Broad Tank- 2-D 1.59 1.64 0.092 0.105

Nonlinear Sloshing 3-D 1.47 1.59 0.089 0.127

Tall Tank- 2-D 1.64 1.64 0.379 0.262

Linear Sloshing 3-D 2.46 2.46 0.362 0.266

Tall Tank- 2-D 1.68 1.67 0.366 0.259

Nonlinear Sloshing 3-D 2.43 2.59 0.378 0.266

Table 5.3: Liquid Sloshing in Rigid Containers Under the Northridge Record

Several conclusions may be drawn by observing the values in Table (5.4). For

both broad and tall tanks, the acceleration at the top of the tank shell is much greater

than that of the ground. Thus, the total overturning moment and base shear exerted

on the flexible tank are much greater than those exerted on the rigid tank. This is

due to the fact that the impulsive liquid loads arise through the acceleration of the

shell. If the shell is flexible, two acceleration components must be considered: the

acceleration of the undeformed shell, i.e., the ground acceleration, and the relative

acceleration due to shell deformations. In a rigid tank, only the acceleration of the

undeformed shell is considered leading to the noticeable difference in the magnitude

of the base shear and the overturning moments.

A comparison between the response of the broad and the tall tank shows that

the component of the overturning moment exerted on the tank wall in the tall tank

dominates that exerted on the tank base. On the contrary, the component of the
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Response Parameter EI Centro Record Northridge Record

Broad Tall Broad Tall

Top Lateral Acceleration 0.576 g 0.800 g 0.664 g 1.210 g

Top Lateral Deflection (in) 0.385 0.421 0.193 0.533

Total OTM / WR 0.148 0.605 0.176 0.943

Wall OTM / WR 0.067 0.581 0.090 0.921

Base Shear / W 0.214 0.377 0.254 0.577

Axial Stress - Beam Theory (Ksi) -0.97 -5.46 -1.26 -8.52

Base Axial Stress (Ksi) -2.03 -5.77 -2.11 -9.10

Base Hoop Stress (Ksi) 0.99 3.16 0.96 3.89

Axial Stress at 0.25H (Ksi) -0.59 -3.48 -0.47 -5.78

Hoop Stress at 0.25H (Ksi) 17.3 8.95 18.83 9.45

Table 5.4: Anchored Tank Response

overturning moment exerted on the base of the broad tank is dominant. In addition,

hoop stress near the base of the broad tank is greater than that of the tall tank. This

explains the difference in the observed buckling modes of the two tanks. Previous

damage observations of liquid storage tanks after major earthquakes showed that

Elephant Foot buckling was the most common damage in broad tanks while tall

tanks suffered Diamond-shaped buckling spreading around the circumference.

Current seismic standards for liquid storage tanks suggest the use of a response

spectrum to evaluate the overturning moment exerted on the tank wall. This moment

is assumed to be resisted mainly by a compression in the tank shell and a tension in

the anchors. To calculate the resulting compressive stress at the bottom of the tank

shell, flexural beam formula is used. This assumption yields the following compressive
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stress

OTM
CTb = --2- + 'YwHw

7r R t
(5.3)

where t is the shell thickness near the tank base and H w is height of the tank wall. It

is evident from Table (5.4) that this assumption is valid only for high values of H / R.

As the tank gets broader, the plane section assumption becomes unconservative to

use. The actual stress distribution around the circumference of the broad tank shows

a stress concentration towards the principal diameter which parallels the earthquake

excitation, leading to an amplified peak stress.

5.3 Unanchored Tank Response

In order to evaluate the effect of the base boundary conditions on the response

of liquid storage tanks, the tank base plate was considered supported on a tensionless

elastic foundation of a uniform stiffness of 1000 lb/in/in2 in compression. Table (5.5)

provides the unanchored tank response using the small deflection theory.

Figures (5.9), (5.10), (5.11) and (5.12) display time history comparisons between

the anchored and the unanchored broad tank for the overturning moment measured

at the center of the base plate and for the base axial stresses when subjected to

Northridge and El Centro ground motions, respectively. Figures (5.13), (5.14), (5.15)

and (5.16) show the same comparison for the tall tank. The response of the unan-

chored tank was governed primarily by a rocking motion. This mode was found to

have a dominant "period" of 0.41 sec for the broad tank and 0.82 sec for the tall

tank. Based on these periods, the foundation rocking damping is estimated to be
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Response Parameter El Centro Record Northridge Record

Broad Tall Broad Tall

Top Lateral Acceleration 1.999 g 0.934 g 2.001 g 0.845 g

Top Lateral Deflection (in) 7.43 5.66 6.24 13.49

Total OTM / WR 0.200 0.380 0.198 0.477

Wall OTM / WR 0.075 0.317 0.065 0.353

Base Shear / W 0.292 0.243 0.258 0.293

Base Axial Stress (Ksi) -4.75 -6.71 -4.62 -7.90

Base Hoop Stress (Ksi) 9.56 8.46 10.84 8.07

Axial Stress at 0.25H (Ksi) -2.47 -4.69 -2.04 -5.58

Hoop Stress at 0.25H (Ksi) 19.85 11.51 21.50 12.89

Maximum Uplift Displacement (in) 1.05 1.75 1.50 2.87

Minimum Contact Area 0.732 0.671 0.733 0.610

Table 5.5: Unanchored Tank Response - Small Deflection Assumptions

5%. On the other hand, the response of the anchored tank was governed primar­

ily by the flexible-impulsive pressure component which has a fundamental period of

0.162 sec for the broad tank and 0.189 sec for the tall tank. Since the rocking pe­

riod is relatively large as compared to the flexible-impulsive period, the overturning

moment exerted on the anchored tank may be larger than that exerted on the unan­

chored tank. However, due to the nature of the boundary conditions associated with

the base of the unanchored tank, the axial and hoop stresses at the bottom of the

unanchored tank shell were larger than those of the anchored tank. The response of

unanchored tanks was dominated by the uplift mechanism which varied nonlinearly

with the intensity and frequency of input motions. The coupling of uplift mechanism

with out-of-round distortions resulted in high compressive axial membrane stresses
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developed over a narrow contact zone. This effect is reflected by the sharp peaks on

the compression side of the time history diagrams of the axial stress that occurred

simultaneously with large uplifting displacements. The cases on which the axial stress

at the bottom of the anchored tank shell were larger than those of the unanchored

tank are attributed to the large difference between the overturning moments in the

two tanks. Yet, sharp peaks are still shown on the compression side of the axial stress

time history diagrams of these tanks.
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The contact characteristics of the unanchored tank with its foundation are im-

portant factors in evaluating the response of such a tank. Figures (5.17), (5.19),
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(5.21) and (5.23) show the uplift displacement of the two extreme opposite points on

the principal diameter which parallels the earthquake excitation of the broad and tall

tanks, respectively, when subjected to the Northridge and El Centro ground motions.

They show that the uplift displacement on the tension side is much higher than the

penetration displacement on the compression side. Such a behavior is expected due

to the tensionless nature of the foundation. In addition, Figures (5.18), (5.20), (5.22)

and (5.24) show the time history of the change in the area of contact of the base plate

with the foundation (A c ) as compared to the total area (At).

5.3.1 Effect of Foundation Stiffness

In order to evaluate the effect of the stiffness of the supporting foundation

on the dynamic response of unanchored tanks, the tank base plate was considered

supported on a tensionless elastic foundation of a uniform stiffness of 100 lb/in/in2

in compression. Table (5.6) shows the unanchored tank response using the small

deflection theory. The dominant period of the rocking mode of the tall tank increased

to 1.16 sec while the one for the broad tank showed almost no change. This is
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attributed to the fact that the portion of the base plate of the broad tank located in

the middle of the tank remains inactive in a horizontal position during the earthquake,

as shown in Figure (5.25). The portion near the edges is frequently penetrating

into the foundation and uplifting above it. Because of high foundation stiffness, the

penetration displacement is small as compared to the uplift displacement. As a result,

the resistance of the base plate to the uplifting force becomes the governing factor in

the rocking motion of the tank. On the other hand, as shown in Figure (5.26), most

of the base plate of the tall tank showed rocking motion. Thus, the period of the
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Response Parameter El Centro Record Northridge Record

Broad Tall Broad Tall

Top Lateral Acceleration 0.851 g 0.504 g 0.831 g 0.824 g

Top Lateral Deflection (in) 10.16 5.91 6.03 15.01

Total OTM / WR 0.161 0.228 0.200 0.277

Wall OTM / WR 0.057 0.191 0.057 0.245

Base Shear / W 0.224 0.144 0.227 0.220

Base Axial Stress (Ksi) -2.41 -4.52 -1.92 -4.50

Base Hoop Stress (Ksi) 8.11 5.39 7.95 7.40

Axial Stress at 0.25H (Ksi) -1.01 -3.55 -0.72 -3.63

Hoop Stress at 0.25H (Ksi) 18.72 10.53 19.76 12.22

Maximum Uplift Displacement (in) 1.58 1.74 1.90 3.60

Minimum Contact Area 0.817 0.768 0.817 0.732

Table 5.6: Response of Unanchored Tanks on Softer Foundation

tank increased due to the decrease in the rotational stiffness of the base plate. This

results in hydrodynamic forces which are lower than those exerted when the tank was

supported on a stiffer foundation. In addition, increasing the foundation flexibility

caused the contact zone to be larger and pressure distribution on the foundation was

more uniform than those of stiffer foundations. As a result, the compressive stresses

in the bottom of the tank shell were lower, because they were distributed more widely

along the base of tank wall, and the uplift displacements were higher than those of

tanks supported over more rigid foundations.
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5.3.2 Large Deflection Effect

The response of the two tanks was estimated using the large deflection assump­

tion and the tank base plate was considered supported on a tensionless elastic foun­

dation of a uniform stiffness of 1000 lb/in/in2 in compression. Table (5.7) shows the

response of these tanks to El Centro and Northridge earthquakes, respectively. The

table shows a reduction in the uplift displacements of the base plate and an increase

in the contact area of the base plate with the foundation due to the membrane effect

that increased its uplifting stiffness. This also has caused the dominant period of the

rocking motion to decrease to 0.21 sec for the broad tank and 0.55 sec for the tall

tank. In addition, the membrane effect of the tank shell has reduced the deflection

and acceleration at top of the broad tank. As a result, the impulsive acceleration was

less and the resulting hydrodynamic forces were also less. For a tall tank, which acts

more like a cantilever, this did not have much effect on the tank shell acceleration

and the hydrodynamic forces were also were not altered much.

Axial stresses at the bottom of the tank shell were less than those using the small

deflection assumption. This is attributed to the reduction in the uplift displacements

as well as the increase in the contact area of the tank base plate.

5.3.3 Effect of Plasticity

The excessive uplifting displacement of the base plate of an unanchored liquid

storage tank usually causes a plastic hinge to develop in the connection between the

base plate and the shell. Table (5.8) shows the response of the unanchored tanks

to El Centro and Northridge earthquakes, respectively, taking into consideration the
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Response Parameter El Centro Record Northridge Record

Broad Tall Broad Tall

Top Lateral Acceleration 1.345 g 0.812 g 1.652 g 0.853 g

Top Lateral Deflection (in) 1.65 6.65 1.30 8.90

Total OTM / WR 0.127 0.374 0.167 0.470

Wall OTM / WR 0.047 0.314 0.060 0.348

Base Shear / W 0.183 0.232 0.237 0.291

Base Axial Stress (Ksi) -1.68 -6.55 -1.79 -6.50

Axial Stress at 0.25H (Ksi) -0.93 -4.61 -0.81 -4.62

Hoop Stress at 0.25H (Ksi) 17.46 11.25 18.73 12.49

Maximum Uplift Displacement (in) 0.36 1.56 0.46 2.52

Minimum Contact Area 0.792 0.683 0.793 0.622

Table 5.7: Unanchored Tank Response - Large Deflection Assumption

possibility of the formation of this plastic hinge and the large deflection effect. The

tank base plate was considered supported on a tensionless elastic foundation of a

uniform stiffness of 1000 lb/in/in2 in compression.

The lateral stiffness of the unanchored tank shell may be divided into two com­

ponents: a vertical stiffness and a horizontal stiffness. The vertical stiffness is caused

by the cantilever effect which depends mainly on the rotational stiffness provided from

the connection between the base plate and the tank shell. The horizontal stiffness is

caused by the hoop effect due to the horizontal curvature of the shell. The formation

of the plastic hinge decreases the vertical stiffness of the tank shell leading to a longer

period for its lateral vibration. As a result, the hydrodynamic forces on the tank wall

are less than those exerted when the plasticity was ignored. In addition, formation of
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Response Parameter El Centro Record Northridge Record

Broad Tall Broad Tall

Top Lateral Acceleration 2.810 g 0.576 g 1.390 g 0.785 g

Top Lateral Deflection (in) 3.47 4.70 1.08 9.44

Total OTM / WR 0.118 0.305 0.154 0.394

Wall OTM / WR 0.039 0.260 0.055 0.312

Base Shear / W 0.148 0.185 0.218 0.254

Base Axial Stress (Ksi) -2.75 -5.43 -1.86 -6.74

Axial Stress at 0.25H (Ksi) -1.54 -3.66 -1.00 -4.45

Hoop Stress at 0.25H (Ksi) 17.20 8.19 18.02 8.56

Maximum Uplift Displacement (in) 1.22 1.73 0.52 3.13

Minimum Contact Area 0.732 0.720 0.768 0.659

Table 5.8: Unanchored Tank Response - Large Deflection and Plasticity Assumptions
are Included

the plastic hinge increased the uplift displacements of the base plate and decreased

the contact area of the base plate with the foundation.

5.3.4 Effect of Base Plate Thickness

The uplift mechanism that governs the response of unanchored tanks is influ-

enced by the thickness of the base plate. Tanks with thinner base plate uplift more

and consequently more axial stresses are developed at the bottom of the tank shell.

In addition, decreasing the thickness of the base plate reduces the rocking stiffness

and consequently lengthens the rocking period. This causes developed hydrodynamic

forces to be slightly less than those of tanks with thicker base plate. Table (5.9) shows
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Response Parameter El Centro Record Northridge Record

Broad Tall Broad Tall

Top Lateral Acceleration 1.22g 0.78 g 2.09 g 0.80 g

Top Lateral Deflection (in) 1.75 6.46 1.89 9.9

Total OTM / WR 0.104 0.358 0.156 0.430

Wall OTM / WR 0.039 0.304 0.055 0.345

Base Shear / W 0.147 0.220 0.214 0.288

Base Axial Stress (Ksi) -1.64 -7.03 -2.36 -7.40

Axial Stress at 0.25H (Ksi) -0.76 -5.15 -1.36 -5.40

Hoop Stress at 0.25H (Ksi) 16.39 10.82 17.71 11.60

Maximum Uplift Displacement (in) 0.46 1.71 0.727 2.96

Minimum Contact Area 0.768 0.646 0.756 0.622

Table 5.9: Response of Unanchored Tanks with Reduced Base Plate Thickness ­
Large Deflection Assumption

the response of the unanchored tanks to El Centro and Northridge earthquakes, re-

spectively, assuming that the base plate thickness is 0.5 inch and considering the large

deflection effect.

5.3.5 Effect of Vertical Excitation

In order to assess the effect of the vertical component of an earthquake excitation

on the response of unanchored liquid storage tanks, both broad and tall tanks were

subjected to the vertical component of the Northridge Record that has a peak ground

acceleration of 0.552g, as shown in Figure (5.27). Table (5.10) shows the maximum

response when the broad and tall tanks were subjected to the vertical component
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I Broad I Tall I
Top Lateral Acceleration 1.64g 0.82 g

Top Lateral Deflection (in) 1.31 8.70

Total OTM / WR 0.193 0.461

Wall OTM / WR 0.059 0.358

Base Shear / W 0.234 0.278

Base Axial Stress (Ksi) -1.65 -6.64

Axial Stress at 0.25H (Ksi) -0.84 -4.73

Hoop.Stress at 0.25H (Ksi) 19.13 12.58

Maximum Uplift Displacement (in) 0.60 2.55

Minimum Contact Area 0.793 0.610

IResponse Parameter

Table 5.10: Response of Unanchored Tanks Subjected to Northridge Vertical Record
- Large Deflection Assumption

of the Northridge earthquake in addition to the horizontal component. Apparently

vertical component altered the hydrodynamic forces exerted on unanchored tanks. If

the peak response of the vertical component of an earthquake occurred simultaneously

and in the same direction with the peak response of the horizontal component, it

may significantly increase the exerted hydrodynamic forces excerted on the tank.

Tables (5.11) and (5.12) summarize the effect of the aforementioned factors on the

response of broad and tall liquid storage tanks, respectively.
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Base Axial Max. Uplift Total Base

Stress (Ksi) DispI. (in) OTM/WR Shear/W

Anchored El Cen. -2.03 - 0.148 0.214

Northr. -2.11 - 0.176 0.254

U Small El Cen. -4.75 1.05 0.200 0.292

n Deflection Northr. -4.62 1.50 0.198 0.258

a Softer El Cen. -2.41 1.58 0.161 0.224

n Foundation Northr. -1.92 1.90 0.200 0.227

c Large El Cen. -1.68 0.36 0.127 0.183

h Deflection Northr. -1.79 0.46 0.167 0.237

0 Plasticity El Cen. -2.75 1.22 0.118 0.148

r Northr. -1.86 0.52 0.154 0.218

e Plate Thick. El Cen. -1.64 0.46 0.104 0.147

d is 0.5 inch Northr. -2.36 0.73 0.156 0.214

VI. Excit. Northr. -1.65 0.60 0.193 0.234

Table 5.11: Maximum Response Summary of the Broad Unanchored Tank

5.4 Lateral Static Push Response of Unanchored

Tanks

The lateral static push analysis is performed to investigate the behavior of

unanchored liquid storage tanks when subjected to lateral earthquake loads. As the

tank is pushed in the lateral direction, it uplifts from its foundation and develops a

similar uplifting mechanism to that occurred under earthquake excitations. As shown

in Figure (5.28), a hydrodynamic pressure distribution was assumed on the tank wall
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Base Axial Max. Uplift Total Base

Stress (Ksi) DispI. (in) OTM/WR Shear/W

Anchored EI Cen. -5.77 - 0.605 0.377

Northr. -9.10 - 0.943 0.577

U Small EI Cen. -6.71 1.75 0.380 0.243

n Deflection Northr. -7.90 2.87 0.477 0.293

a Softer EI Cen. -4.52 1.74 0.228 0.144

n Foundation Northr. -4.50 3.60 0.277 0.220

c Large EI Cen. -6.55 1.56 0.374 0.232

h Deflection Northr. -6.50 2.52 0.470 0.291

0 Plasticity EI Cen. -5.43 1.73 0.305 0.185

r Northr. -6.74 3.13 0.394 0.254

e Plate Thick. EI Cen. -7.03 1.71 0.358 0.220

d is 0.5 inch Northr. -7.40 2.96 0.430 0.288

VI. Excit. Northr. -6.64 2.55 0.461 0.278

Table 5.12: Maximum Response Summary of the Tall Unanchored Tank

as

p = Po (1 - ~22) cos e

where y is the elevation of a point on the shell measured from the base, H is the

fluid depth, e is the angle measured from the axis of excitation and Po is the pressure

amplitude at the tank base at e = 0°. If M denotes the overturning moment about

the center of the base, then

M fa
Hfa21r 'if

pRy cos e de dy = - H 2poR
004

75360 Po For broad tank

(5.5)
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= 97667 Po For tall tank

and similarly, if Q is the base shear, then

and accordingly

Q rH r2rr
pR cos e de dy = 27f H poR

Jo Jo 3

5024 Po For broad tank

3617 Po For tall tank

M
fj = - = o375HQ .

(5.6)

(5.7)

Figures (5.29) and (5.30) show the finite element mesh used to model the broad

and the tall tanks, respectively. The broad tank showed buckling at a value of

OTMjWR=0.077 which indicates that the broad tank may have buckled during tran-

sient responses presented before. On the contrary, the tall tank did not experience

buckling until it overturns. Figures (5.31) and (5.32) show that uplift displacements

predicted from static analyses were larger than those predicted from dynamic anal-

yses presented before. However, predicted axial stresses at the bottom of the tank

shell were compared to those predicted from dynamic analyses.



Figure 5.29: Finite Element Model of the Broad Tank
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Chapter 6

Conclusion

A finite element program was developed to analyze the complexities associated

with the nonlinear dynamic response of unanchored liquid storage tanks. The pro­

gram is capable of modeling curved shells with material and geometric nonlinearities,

nonlinear sloshing behavior of fluids, nonlinear fluid-structure interaction and a gen­

eral class of contact problems. It was observed that the overturning moment exerted

on an unanchored tank may be smaller than that exerted on a similar anchored tank

due to the longer-period characteristic of the rocking motion, which dominates the

behavior of unanchored tanks. However, due to the nature of the boundaries associ­

ated with unanchored tanks at their base, the axial and hoop stresses at the bottom

of an unanchored tank shell may be larger than those of a similar anchored tank sub­

jected to the same ground motion. The response of unanchored tanks was dominated

by the uplift mechanism that varied nonlinearly with the intensity and frequency of

the input motion. The coupling of the uplift mechanism with out-of-round distor­

tions resulted in high compressive axial membrane stresses developed over a narrow

contact zone. This effect is reflected by the sharp peaks on the compression side of

the time histories of axial stresses, which occurred simultaneously with large uplift­

ing displacements. The cases on which axial stresses at the bottom of an anchored

tank shell were larger than those of a similar unanchored tank are attributed to the
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large difference between the overturning moments in the two tanks. Yet, sharp peaks

appear on the compression side of the axial stress time history of these tanks.

Many factors that affect the seismic response of unanchored tanks were investi­

gated. It was found that unanchored tanks supported on flexible foundations exhibit

lower compressive stresses and higher uplift displacements than those supported over

more rigid foundations. This was attributed to flexible foundations, where the contact

zone is larger and the pressure distribution on the soil is more uniform than those

of rigid foundations. In addition, foundation softness lengthens the rocking period of

the tank resulting in less hydrodynamic forces. Membrane forces induced due to large

deflections were found to reduce uplift displacements and consequently axial stresses.

Formations of a plastic hinge in the connection between the tank shell and base plate

increase uplift displacements. Reducing the thickness of the base plate causes the

tank to uplift more and consequently more axial stresses are developed at the bot­

tom of the tank shell. In addition, decreasing the base plate thickness reduces the

rocking stiffness and consequently lengthens the rocking period. Thus, the developed

hydrodynamic forces were less than those for tanks with thicker base plates. Vertical

ground motions were found to alter the hydrodynamic forces exerted on unanchored

tanks. If the peak response to the vertical component of an earthquake occurred

simultaneously and in the same direction with the peak response to the horizontal

component, the exerted hydrodynamic forces on the tank may significantly increase.
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